979-8-3315-5678-5/25/$31.00 ©2025 IEEE

MMEC: Using MoE Efficiently for Mobile Edge
Computing

Sakhawat Hossan

Jing Deng

Dept. of Computer Science, UNC Greensboro, Greensboro, NC, U. S. A.
s_hossan@uncg.edu, jing.deng@uncg.edu

Abstract—Mixture of Experts (MoE) is gaining increased
attention in the field of Large Language Model (LLM) research
due to its ability to enhance model scalability. This technique
is particularly advantageous for devices with limited resources,
such as mobile edge devices. However, identifying suitable pre-
trained off-the-shelf MoE models can be challenging, requiring
fine-tuning for specific tasks at hand. However, fine-tuning MoE
is a complex and time-consuming process that demands signifi-
cant resources, making it impractical for mobile edge devices. In
this work, we propose a novel framework to assist mobile edge
devices in identifying the optimal fine-tuned or off-the-shelf MoE
models required for specific tasks. Our framework, termed MoE
for Mobile Edge Computing (MMEC), maintains a repository
of MoE models fine-tuned with varying numbers of experts on
popular datasets and some general-purpose pre-trained LLMs. It
analyzes a small number of randomly selected sampled queries
from mobile edge devices before recommending suitable MoE
models. Through extensive simulations, we demonstrate that
MMEC achieves strong F1 scores with lower computation times
and maintains a healthy overall gain, defined as a combination
of different performance metrics, over other techniques.

Index Terms—Mixture of Experts, Large Language Models,
LLM, MoE, Mobile Edge Devices, Resource Optimization

I. INTRODUCTION

Generative Artificial Intelligence (GAI) is revolutionizing
applications such as intelligent chatbots, translation services,
and customer support. Large Language Models (LLMs) are
pivotal to this transformation, enabling sophisticated natural
language processing tasks. The Mixture of Experts (MoE)
model is a critical innovation that enhances scalability by
using multiple expert networks, each specializing in different
data subsets, to improve inferencing performance in some-
times heterogeneous tasks [1].

Deploying LLMs on edge devices, which are limited in
computational and memory resources, presents significant
challenges. Traditional models are often too resource-intensive
for edge deployment. MoE models, which activate a subset of
experts during inference, offer a promising solution. However,
fine-tuning and identifying pre-trained MoE models for spe-
cific tasks is complex and demands resources beyond what
edge devices can typically provide [2].

The computational demands of MoE models require effi-
cient resource management strategies. Dynamic expert selec-
tion and load balancing can help optimize the utilization of
edge devices’ limited resources [3]. Furthermore, hardware
accelerators like GPUs and TPUs enhance the viability of

1629

MoE models for delay-critical applications [4]. The integra-
tion of MoE models with edge computing environment opens
new possibilities for applications in IoT, autonomous vehicles,
and smart healthcare systems, where low latency and high
reliability are essential [5]. Current methods for optimizing
LLM deployment on edge devices, such as memory swapping
or expert pruning, often result in trade-offs between memory
usage and inference performance [6], [7].

In order to address these challenges, we propose an MMEC,
MoE for Mobile Edge Computing, framework. MMEC main-
tains a repository of MoE models fine-tuned with varying
numbers of experts and recommends suitable models based
on the specific task and resource constraints. Extensive sim-
ulations show that MMEC achieves higher F1 scores with
lower execution time and CPU usage, with only a slight
increase in memory consumption. This approach significantly
improves the feasibility of deploying LLMs on edge devices
without compromising performance. In our design, two key
elements are used: Dynamic Expert Activation and Softmax-
based Gating Mechanism.

The rest of the paper is structured as follows: Section II
provides a review of related work. In Section III, we introduce
the details of our proposed framework. Section IV evaluates
the proposed framework under various settings. Finally, Sec-
tion V concludes the paper and discusses potential directions
for future work.

II. BACKGROUND AND RELATED WORK

The concept of LLMs originated from early natural lan-
guage processing (NLP) methods such as n-gram and hidden
Markov models, which were limited by predefined vocab-
ularies and simplistic probabilistic frameworks [8]. Neural
network-based models, including Recurrent Neural Networks
(RNNs) and Long Short-Term Memory (LSTM) networks,
marked a significant leap forward by enabling the modeling
of sequences and capturing longer dependencies in text [9].
These models allowed for more accurate predictions and laid
the groundwork for modern LLMs.

The development of LLMs accelerated with the introduc-
tion of the Transformer architecture by Vaswani et al. in 2017,
which revolutionized NLP by addressing the limitations of
RNNs and LSTMs through self-attention mechanisms [10].
This breakthrough enabled parallel computation and scalable

ICTC 2025

models, leading to the development of influential models
like BERT [11], DeBERTa, GPT [12], and TS [13]. BERT’s
bidirectional context improved NLP tasks, while GPT demon-
strated powerful results in text generation through pre-training
and fine-tuning.

MoE was initially proposed by Jacobs et al. in the early
1990s, featuring multiple expert models with a gating net-
work to select the appropriate expert(s) [14]. Despite its
early promise, MoE models were hampered by scalability
challenges due to high computational requirements. Recent
advances, particularly in the Transformer architecture and
hardware, have revitalized interest in MoE models, integrating
them into the Sparsely Gated Mixture-of-Experts layer to
train large networks efficiently by activating only a subset
of experts [1].

Recent innovations in MoE models have focused on ef-
ficiency and scalability. Switch Transformers, introduced by
Wang et al. [2], scaled to trillion-parameter models us-
ing sparsity techniques, achieving significant performance
improvements with reduced computational costs. Dynamic
expert selection and load-balancing techniques have further
optimized resource utilization, making MoE models more
practical for real-time applications on resource-constrained
devices.

The deployment of LLMs on edge devices poses significant
challenges due to their demands for memory and computa-
tional power. Zhang et al. [15] proposed a framework called
EdgeShard, which leverages collaborative edge computing
to address these challenges. By distributing the computation
across geo-distributed edge devices and cloud servers, Edge-
Shard optimizes memory usage and computational load. The
framework includes three key stages: profiling, scheduling
optimization, and collaborative inference. It minimizes infer-
ence latency and maximizes throughput, making it feasible
to run LLMs on resource-constrained edge devices. However,
the reliance on collaborative edge computing introduces extra
complexities in managing distributed resources and ensuring
data privacy.

Our proposed framework offers several distinct advantages
over existing solutions:

o Edge Device Task Analyzer: This component analyzes a
small sample of the potential list of tasks at hand close
to the edge device, tailoring model deployment for better
resource usage.

o Library of Pretrained MoE Models and Off-the-Shelf
LLM Models: By maintaining a comprehensive repos-
itory of fine-tuned MoE models and general-purpose
LLMs, the framework can quickly identify the most
suitable model for a given task without the need for
complete re-trainings.

o Optimal Model Suggestion: The framework intelligently
suggests the best MoE or general LLM models for
specific tasks, balancing inference accuracy, response
time, memory usage, and computational cost.

III. THE MMEC FRAMEWORK

The proposed architecture, depicted in Figure 1, is designed
to leverage the scalability of MoE models in edge devices,
optimizing both response accuracy and efficiency. The ar-
chitecture consists of three primary components: the pool of
edge devices, the MMEC edge client, and the MMEC cloud
infrastructure. This distributed framework allows the system to
dynamically select and fine-tune models based on the specific
capabilities of the edge device and the task at hand, ultimately
enhancing model performance.

A. The pool of edge devices

The pool of edge devices represents a diverse set of
connected devices, e.g., a WiFi router serving as Edge Device
1 and a UAV serving as Edge Device 2, that interact with the
edge client. The onboard edge client samples the computa-
tional tasks, along with the device’s hardware specifications
and profile information. Before querying the model library, the
client assembles a compact request that includes the task sig-
nature (domain, estimated input size/tokens, latency—quality
targets), device profile (CPU/GPU/NPU type, RAM/VRAM,
battery, current load), network status, a digest of locally
cached experts, policy constraints (e.g., privacy/offline), and
a tentative expert-budget range. Through the Task Analyzer,
the client selects the most suitable MoE configuration tailored
to the device and task requirements. This process ensures the
model activates only the necessary experts without overbur-
dening limited edge resources, balancing response quality and
efficiency.

B. Pre-trained model library
The pre-trained MoE Library supplies domain-tuned

Pool of Edge Devices

Edge Edge Edge Edge
Device 1 Device 2 Device 3 Device n

v
8 3
Mobile Edge Client

Cloud Framework
l— Selected ud Framew

MoE <—
Model

Hardware List

Commonly used
Datasets

Profile Information

[l

Task List
Pretrained
MoE and

LLM Library ¢—|

MoE Training

Record Database

Sample Tasks

Task Anlyzer »

Fig. 1: MMEC framework architecture

1630

models and activates only a minimal subset of experts per
task to reduce memory and compute footprint. In response
to a client request, the MMEC Cloud consults performance
logs to recommend the expert count k and routing (i.e., the
component that directs tokens to the most suitable experts),
and returns a compact package containing model_id, quan-
tization level, expert IDs, gating thresholds, token/latency
budget, and cache policy. When bandwidth is limited, only
the required experts are transmitted; if offline, the client
falls back to a local heuristic. The cloud also hosts training
pipelines, datasets, and results storage, enabling continuous
improvements that are pushed back to edge devices.

C. Task Analyzer and Fine-Tuning Process

Figure 2 demonstrates the fine-tuning workflow managed
by the Task Analyzer. This component is central for optimiz-
ing MoE model performance by analyzing various datasets,
such as SQuUAD V2.0 and MedMCQA. The process begins
by splitting each dataset into training, validation, and testing
sets to ensure robust model evaluation. After splitting the
data, the trainer (for example, a BERT model) is initialized
and subsequently fine-tuned on the specific dataset. This fine-
tuning process allows the MoE model to adapt to the nuances
of each dataset, ensuring that the model performs optimally
across different tasks.

Task Analyzer

Data Set 2
MedMCQA Data Set 3

Data Set 1
SQUAD V2.0

Data Set n ’

$

Split into Training, Validation and Testing Sets

‘ Initialize Trainer, Ex:

Save fintuned
Model and
Tokenizer

Finetune for all the
required Datasets

—

(BERT model)

-

Fig. 2: MMEC Task analyzer fine tuning

The final step involves saving the fine-tuned model and
tokenizer for future deployments on edge devices. By con-
tinuously fine-tuning models for different datasets, the Task
Analyzer ensures that edge devices receive highly specialized
models tailored to the types of questions or tasks they are
likely to encounter. This modular approach to model fine-
tuning enhances both the accuracy and adaptability of the
system.

D. MoE model architecture

The architecture presented in this article integrates an MoE
framework into a BERT model for a question-answering
task. The base architecture is enhanced with a custom MoE

design that leverages multiple expert modules. Specifically,
the architecture introduces a set of linear layers (experts) that
are selectively activated during inference based on a gating
mechanism. This process, known as expert routing, enables
the model to dynamically determine which subset of experts
should be used for each input. The gating mechanism, a
linear layer followed by softmax, produces scores that dictate
how much each expert contributes to the output. By utilizing
a dropout layer for regularization and selectively applying
different experts, the model increases its capacity to handle
diverse types of inputs effectively.

A unique design aspect of this architecture is its ability
to scale dynamically with the number of experts without
uniformly increasing computational cost, as only a subset of
experts is activated for each input. This allows the model to
achieve a higher level of specialization and capacity while
maintaining efficient resource usage. The expert routing mech-
anism helps improve performance and reduce overfitting by
guiding inputs to the most relevant experts. This dynamic and
selective activation contributes to both improved F1 scores and
reduced response generation time. I

IV. PERFORMANCE EVALUATION
A. Experiment Setup

Platforms: To emulate a heterogeneous edge computing
environment, we utilized a Python virtual environment to
simulate multiple edge devices with varying configurations.
Each virtual edge node operated in isolation, allowing inde-
pendent execution and result collection. The entire simulation,
including both the central server and all emulated edge
devices, was conducted virtually on a high-performance Linux
server. This approach enabled controlled experimentation of
distributed inference scenarios in a scalable and reproducible
manner.

Tasks, Datasets, and Models: We employed two distinct
question-answering datasets, SQuAD V2.0 [16] and MedM-
CQA [17], for our experiments. SQuAD V2.0 is a widely used
dataset for general-purpose question answering, consisting of
over 100,000 answerable questions and 50,000 unanswerable
ones. In contrast, MedMCQA is a large-scale, multiple-choice
dataset specifically curated for medical domain question-
answering tasks.

For modeling, we developed MoE architectures based on
both the Base BERT and Base DeBERTa models. We ex-
perimented with varying the number of experts from 1 to
32, with the goal of generating contextually aligned answers
to the reference responses in the datasets. All MoE models
were fine-tuned for 2 and 5 epochs to assess generalization
and convergence. By employing two diverse datasets and
two distinct language models, we aim to demonstrate the
robustness and generalizability of our MoE-based framework
across domains and model architectures.

Baselines: As baselines, we utilized the original Base
BERT and Base DeBERTa models without expert routing.

1631

The performance of these baselines was compared against
their corresponding MoE variants, evaluating improvements
in answer accuracy and generation efficiency.

Evaluation Metrics: We evaluate the overall performance
of our proposed framework using multiple quantitative met-
rics:

1) Download size: the total size of the models that need

to be downloaded onto mobile edge devices.

2) Training time: the amount of time required to train
each model.

3) Response Quality Evaluation: To assess the quality of
the generated answers, we employ two widely adopted
evaluation methods: BERTScore [18], which calculates
the semantic similarity between candidate and reference
answers using contextual embeddings, and the SQuAD
Evaluation [16], which reports exact match and F1
scores based on ground-truth answers.

4) Gain of MoE Selection: computed using analyzer
confidence of expert selection J, response F1 score,
analyzing time efficiency 7, (defined as the analyzing
time divided by the maximum analyzing time), and
response time efficiency 7, (defined as the response
generation time divided by the maximum response
generation time)'

G=64+F—ng—n, (1

These combined metrics provide a comprehensive under-
standing of both system-level performance and the semantic
fidelity of generated responses.

TABLE I: Download size for different MoE models (0 means
base and size increases shown as MB for each additional
expert)

[#ofExperts [0 [1 [2 [4 [8 [16 [32 |
BERT dl. size 417 419 422 426 435 453 489
Size Increase N/A 2 3 2 2.25 2.25 2.25

DeBERTa dl. size 371 388 390 394 404 423 458
Size Increase N/A 17 19 23 33 52 87

B. Download size and training time

Table I presents the download sizes for MoE configurations
built on both BERT and DeBERTa models. The baseline
BERT model is 417 MB, with download size gradually
increasing to 489 MB as the number of experts reaches 32—an
overall increase of 72 MB (about 17%). Each additional
expert contributes roughly 2-3 MB. In contrast, the DeBERTa
baseline starts smaller at 371 MB, but its MoE variants scale
less efficiently, reaching 458 MB with 32 experts. The per-
expert size increase ranges from 17 MB to 87 MB, resulting
in a 23% growth. These results highlight that while DeBERTa

'Other more sophisticated measurements of combining this group of
metrics are obviously possible, as heavier focus can be placed on response
quality (F1 score), response latency 7,-, or analyzing time efficiency 74, and
will be investigated in our future work.

offers a smaller starting footprint, BERT-based MoE models
scale more efficiently in terms of download size, an important
consideration for edge deployment scenarios.

TABLE II: Training time (in hours) for different MoE models
(BERT and DeBERTa), datasets (SQuAD and MedMCQA),
and epoch numbers (2 and 5) under different numbers of
experts (n)

[Ep. | Model-Dataset [[n=1 [n=4 | n=8 [n=16 | n=32 |
2 BERT-SQuAD 0.57 0.58 0.61 0.68 0.74
2 BERT-MedMCQA 0.58 0.60 0.66 0.71 0.77
2 DeBERTa-SQuAD 0.47 0.53 0.60 0.64 0.71
2 DeBERTa-MedMCQA 0.52 0.61 0.69 0.76 0.88
5 BERT-SQuAD 1.45 1.59 1.62 1.73 1.92
5 BERT-MedMCQA 1.45 1.48 1.53 1.67 1.87
5 DeBERTa-SQuAD 1.05 1.19 1.26 1.32 1.43
5 DeBERTa-MedMCQA 1.21 1.35 1.41 1.54 1.63

In Table II, we report the training times (in hours) for both
BERT and DeBERTa-based MoE models as the number of
experts increases. Results are shown for two datasets (SQuAD
and MedMCQA) and two training schedules (2 and 5 epochs).
As expected, training time increases with the number of
experts due to the added computational load. Increasing the
number of epochs from 2 to 5 results in approximately 2.5x
longer training durations across all configurations. Notably,
DeBERTa-based models generally require less training time
than their BERT counterparts under similar conditions.

C. Response Quality Evaluation

PSS L At o

.90

W e

0.8

|
1
I
|
1
1
1
1
I
>

F1 Score
o
Y
o Sl T
\\.'(_“_._i
SRS

0.2 [-e- F1 BERTScore on the SQuAD dataset

F1 SQUAD Evaluation on the SQUAD dataset
-e- F1 BERTScore on the MedMCQA dataset
—i— F1 SQUAD Evaluation on the MedMCQA dataset

0.0 v
20 25 30

0 5 10 15
Number of Experts

Fig. 3: BERT: F1 score for BERT Scorer and SQuAD Eval-
uation

Figures 3 and 4 present the F1 score trends for BERT-
based and DeBERTa-based MoE models, respectively, across
the SQUAD and MedMCQA datasets. In both cases, the use
of multiple experts consistently improves model performance
over the base models. Notably, DeBERTa-based models
demonstrate a more pronounced improvement in the medical
domain (MedMCQA), particularly at higher expert counts.
These results reinforce the effectiveness of the MoE approach
and suggest that the benefits of expert-based architectures
generalize across model types and application domains.

1632

TABLE III: SQuAD V2.0 evaluation score across datasets, question types, and number of experts (n).

[Dataset | Model [Q. Type [n=0 | n=1 [n=2] [n=5 | n=6 [n=T | n=8 | n=9 [n=16 [n=32 |
SQuAD BERT Ans. 0.468 0.5577 | 0.5752 | 0.7291 | 0.7479 | 0.7582 | 0.7267 | 0.6951 | 0.6732 | 0.5298 | 0.5287
SQuAD BERT Unans. 0.3295 | 0.7106 | 0.8058 | 0.8105 | 0.8284 | 0.8309 | 0.8023 | 0.7967 | 0.7832 | 0.8059 | 0.7839
SQuAD DeBERTa Ans. 0.4189 0.488 0.5439 | 0.6537 0.683 0.6992 | 0.7202 | 0.7603 | 0.7593 | 0.7029 | 0.6732
SQuAD DeBERTa Unans. 0.1939 | 0.2393 | 0.2939 | 0.3809 | 0.4219 | 0.4559 | 0.4294 | 0.4602 | 0.4782 | 0.4292 | 0.4203

MedMCQA BERT Ans. 0.3448 0.644 0.7424 | 0.7834 | 0.8036 | 0.8275 | 0.8379 | 0.8553 | 0.8289 | 0.5491 | 0.4184
MedMCQA BERT Unans. 0.2462 | 0.5529 | 0.4871 | 0.5494 | 0.6298 0.682 0.7182 | 0.7307 | 0.7198 | 0.4241 | 0.3532
MedMCQA | DeBERTa Ans. 0.7167 | 0.8804 0.894 0.9208 | 0.9383 | 0.9272 | 0.9488 | 0.9551 | 0.9477 | 0.9234 | 0.8298
MedMCQA | DeBERTa Unans. 0.4802 | 0.7833 | 0.8183 | 0.8492 | 0.8955 | 0.9202 | 0.9272 | 0.9392 | 0.9206 | 0.8723 | 0.8203
in all cases. These results highlight the efficiency benefits of
10 MoE models in achieving faster response generation while
f/./"‘"":::‘\ﬂ\ supporting improved performance across domains.
e /r" ‘/,*1—» SITITes S —
o [B e e F. Overall Gain Analysis
g o » .
8 i
o /«; Figure 5 illustrates the overall gain G (as defined in Eq. (1))
N achieved by the MoE models across varying sample sizes,
" (ST BERTScare o The SOAD aataset using 8 experts for both BERT and DeBERTa models. The
o T T M tata et gain metric balances prediction quality with analysis and
—— F1 SQUAD Evaluation on the MedMCQA dataset .
00 response latency. As expected, small sample sizes lead to

° ’ * Numb:i of Experti0 = »
Fig. 4: DeBERTa: F1 score for BERT Scorer and SQuAD
Evaluation

D. SQuAD V2 Evaluation

Table III presents the SQuAD evaluation results, reporting
F1 scores separately for answerable and unanswerable ques-
tions across different expert counts. The results cover both
BERT and DeBERTa models, evaluated on the SQuAD and
MedMCQA datasets. Across all settings, the MoE architecture
consistently outperforms the corresponding base models. Peak
performance is generally achieved at intermediate expert
configurations (typically between 6 and 8 experts), beyond
which diminishing returns or slight declines are observed.

These findings reinforce the benefits of expert-based spe-
cialization and support the robustness of the MoE framework
across different model types, question types, and domains.
The results also suggest that moderate expert sizes strike
a practical balance between performance and computational
efficiency, with the optimum n = 8 for many cases, except a
few at 6 or 9.

E. Response Generation Time

Table IV reports the response generation times for BERT
and DeBERTa models with varying numbers of experts, eval-
uated on both the SQuUAD and MedMCQA datasets. Across
all settings, the base models (0 experts) exhibit significantly
longer response times compared to their MoE counterparts.
Introducing expert routing leads to substantial reductions in la-
tency, especially with smaller expert configurations. Although
response time gradually increases with a higher number of
experts, it remains considerably lower than the base model

lower analysis time but poorer prediction performance, while
very large sample sizes incur higher latency with diminishing
returns. Across both datasets, the trend is consistent, with
MedMCQA showing marginally higher gain values—likely
due to the dataset’s more domain-focused structure. Notably,
the optimal gain is observed at a moderate sample size
around 400, suggesting a practical trade-off point for real-
time applications.

2.50 ~%- BERT Model on SQuAD Dataset

—#- BERT Model on MedMCQA Dataset
DeBERTa Model on SQUAD Dataset

225 —#- DeBERTa Model on MedMCQA Dataset

N
o
3

S
bl

I

\

N
&

Overall Gain

o
3

o
3
bl
4

200 400 600 800 1000
Sample Size

Fig. 5: Overall gain as a function of sample size. Both used
8 experts.

Analyzing all experimental results collectively, our eval-
uations confirm the effectiveness and generalizability of the
MMEC framework. The MoE models consistently outperform
their base counterparts (BERT and DeBERTa) across various
metrics, including F1 score, response generation time, and
overall gain. Moderate configurations (typically between 6
and 8 experts) achieve the best balance between accuracy
and efficiency, with diminishing returns observed at higher
expert counts. These trends hold across both general-purpose
(SQuAD V2.0) and domain-specific (MedMCQA) datasets,

1633

TABLE IV: Response Generation Time for different numbers of experts, n (0 means base), unit in seconds

[Dataset | Model [[n=0 [n=1 [n=2 [n=4 [n=8 [n=16 [n=32]
SQuAD BERT 59.45 | 443 | 447 | 454 | 495 5.29 7.09
MedMCQA BERT 3748 | 435 | 448 | 457 | 4.81 5.30 6.88
SQuAD DeBERTa 4539 | 3.59 | 3.62 | 3.77 | 3.88 3.93 4.18
MedMCQA | DeBERTa 41.88 | 3.02 | 3.17 | 3.26 | 3.95 3.28 3.49

and are validated by both BERTScore and SQuAD evalua-
tion metrics. Furthermore, the response time reductions and
sample-efficient task analysis contribute to a more practi-
cal deployment model for edge devices. The gain metric
further reinforces that our expert selection strategy, com-
bined with lightweight analysis, yields robust performance
improvements under constrained conditions. These findings
collectively demonstrate that MMEC can intelligently and
efficiently support dynamic MoE deployment on mobile edge
platforms.

V. CONCLUDING REMARKS AND FUTURE WORK

In this work, we have proposed MMEC, a framework for
efficient deployment of MoE models on mobile edge devices.
Our approach leverages a lightweight task analyzer to identify
the most suitable model configuration based on a small num-
ber of sampled queries. Through experiments on SQUAD V2.0
and MedMCQA datasets using both BERT and DeBERTa-
based models, we demonstrated that the MoE architecture
consistently improves performance across multiple metrics,
including F1 score, response generation time, and overall gain.
The results show that models with 6 to 8 experts strike the
best balance between performance and efficiency.

Using the comprehensive gain metric, we identified practi-
cal sample sizes for the analyzer to make informed decisions
without incurring high latency. These findings show that
MMEC can effectively support intelligent expert selection
under real-world resource constraints.

Our future work will explore refining the gating mecha-
nism and implementing dynamic expert selection strategies to
further reduce resource usage. These can improve MMEC’s
applicability in real-time and resource-constrained environ-
ments.

REFERENCES

[1]1 S. Pavlitska, C. Hubschneider, L. Struppek, and J. M. Zollner,
“Sparsely-gated mixture-of-expert layers for cnn interpretability,” in
2023 International Joint Conference on Neural Networks (IJCNN),
2023, pp. 1-10.

[2] H. Wang, J. Li, H Wu E. Hovy, and Y. Sun,
“Pre-trained language models and their applications,” En-
gineering, vol. 25, pp. 51-65, 2023. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S2095809922006324

[3] P. Vepakomma, O. Gupta, T. Swedish, and R. Raskar, “Split learning
for health: Distributed deep learning without sharing raw patient
data,” arXiv preprint arXiv:1810.09291, 2018. [Online]. Available:
https://arxiv.org/abs/1810.09291

[4] S. Sadiq and S. R. M. Zeebaree, “Distributed systems for machine
learning in cloud computing: A review of scalable and efficient training
and inference,” ijcs, vol. 13, no. 2, Apr. 2024.

[5] O. Friha, M. Amine Ferrag, B. Kantarci, B. Cakmak, A. Ozgun, and
N. Ghoualmi-Zine, “Llm-based edge intelligence: A comprehensive
survey on architectures, applications, security and trustworthiness,”
IEEE Open Journal of the Communications Society, vol. 5, pp. 5799—
5856, 2024.

[6] M. Lewis, A. v. d. Oord, V. Sze, C. Riquelme, M. Bosma, Y. Bachrach,
N. de Freitas, G. Hinton, and J. Dean, “Sparsely-gated mixture-of-
experts for efficient deep learning,” arXiv preprint arXiv:2308.15030,
2023. [Online]. Available: https://arxiv.org/pdf/2308.15030

[7] C. Liu and J. Zhao, “Resource allocation for stable Ilm training
in mobile edge computing,” in Proceedings of the Twenty-Fifth
International Symposium on Theory, Algorithmic Foundations, and
Protocol Design for Mobile Networks and Mobile Computing,
ser. MOBIHOC ’24. New York, NY, USA: Association for
Computing Machinery, 2024, p. 81-90. [Online]. Available:
https://doi.org/10.1145/3641512.3686358

[8] P. F. Brown, S. A. deSouza, R. L. Mercer, V. J. Della Pietra, and J. C.
Lai, “Class-based n-gram models of natural language,” Computational
Linguistics, vol. 18, no. 4, pp. 467-479, 1992. [Online]. Available:
https://www.aclweb.org/anthology/192-4003/

[9] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735-1780, 1997. [Online]. Available:
https://www.bioinf jku.at/publications/older/2604.pdf

[10] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems, 1. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
Eds., vol. 30. Curran Associates, Inc., 2017.

[11] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,”
Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human
Language Technologies, pp. 41714186, 2019. [Online]. Available:
https://aclanthology.org/N19-1423/

[12] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving
language understanding by generative pre-training,” OpenAl Blog, 2018.

[13] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer
learning with a unified text-to-text transformer,” Journal of Machine
Learning Research, vol. 21, pp. 1-67, 2020. [Online]. Available:
https://jmlr.org/papers/volume21/20-074/20074.pdf

[14] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, “Adaptive
mixtures of local experts,” Neural Computation, vol. 3, no. 1, pp. 79-87,
1991. [Online]. Available: https://doi.org/10.1162/neco.1991.3.1.79

[15] X. Zhang, Y. Wang, Y. Zhao, J. Chen, W. Xu, and
M. Zhang, “Edgeshard: Efficient 1lm inference via collaborative
edge computing,” arXiv preprint arXiv:2405.14371, 2024. [Online].
Available: https://arxiv.org/abs/2405.14371

[16] P. Rajpurkar, R. Jia, and P. Liang, “Squad explorer,” 2016, accessed:
2025-01-23. [Online]. Available: https://rajpurkar.github.io/SQuAD-
explorer/

[17] A. Pal, L. K. Umapathi, and M. Sankarasubbu, “Medmcqa: A large-
scale multi-subject multi-choice dataset for medical domain question
answering,” in Proceedings of the Conference on Health, Inference, and
Learning, ser. Proceedings of Machine Learning Research, G. Flores,
G. H. Chen, T. Pollard, J. C. Ho, and T. Naumann, Eds., vol.
174. PMLR, 07-08 Apr 2022, pp. 248-260. [Online]. Available:
https://proceedings.mlr.press/v174/pal22a.html

[18] T. Zhang*, V. Kishore*, F. Wu*, K. Q. Weinberger, and Y. Artzi,
“Bertscore: Evaluating text generation with bert,” in International
Conference on Learning Representations, 2020. [Online]. Available:
https://openreview.net/forum?id=SkeHuCVFDr

1634

