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Abstract—In the wake of natural disasters, terrestrial com-
munication infrastructure is often rendered inoperative, severely
hampering emergency response efforts. This paper proposes
a resilient communication framework leveraging High-Altitude
Platforms (HAPs) to provide rapid, wide-area connectivity in
disaster-stricken regions. We integrate a reinforcement learning
(RL)-based algorithm that dynamically allocates bandwidth and
adjusts coverage in real time, enabling efficient and adaptive
resource management based on environmental feedback and user
demand. The proposed system enhances communication relia-
bility, reduces latency, and optimizes spectral efficiency under
uncertain and evolving disaster scenarios. Simulation results
demonstrate the effectiveness of the RL-driven HAP network in
maintaining robust communication links and improving overall
disaster response coordination.

Index Terms—High-Altitude Platforms (HAPs), Disaster Relief
Communication, Reinforcement Learning, Resource Allocation,
Emergency Networks, AI-Driven Optimization.

I. INTRODUCTION

Natural and man-made disasters such as earthquakes, floods,
and wildfires often disrupt terrestrial communication infras-
tructure, severely hindering emergency response and coor-
dination [1], [2]. In such scenarios, rapidly deployable and
resilient communication systems are essential for saving lives
and managing resources effectively.

While terrestrial networks are prone to physical damage,
satellite systems—though robust—suffer from high latency,
limited bandwidth, and inflexible deployment [4]. These lim-
itations highlight the need for alternative platforms that offer
scalable, adaptive, and low-latency communication in disaster-
affected regions.

High-Altitude Platforms (HAPs), operating at altitudes of
17-22 km, present a promising solution due to their wide
coverage, low latency, and faster deployment compared to
satellites [3]. Acting as airborne base stations, HAPs can estab-
lish temporary communication backbones to connect isolated
users with emergency services.

However, disaster environments are highly dynamic, with
fluctuating user demand, mobility, and infrastructure damage.
Static resource allocation in such conditions leads to ineffi-
ciencies and degraded service. To address this, we propose
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an Al-driven framework that employs reinforcement learning
(RL) for real-time, adaptive optimization of bandwidth and
coverage.

A. Novelty and Contributions

This paper presents a novel HAP-assisted disaster commu-
nication system integrated with an RL agent for intelligent
resource management. The main contributions include:

o System Design: A modular architecture comprising HAP

nodes, ground terminals, and a centralized RL controller
(see Fig. 1).

o RL-Based Optimization: The resource allocation prob-
lem is modeled as a Markov Decision Process (MDP),
where the RL agent observes system states (e.g., user den-
sity, signal quality) and takes actions such as bandwidth
reallocation and beam steering to maximize coverage and
efficiency.

« Simulation and Validation: The system is implemented
in NS-3 and MATLAB, simulating diverse disaster sce-
narios. Performance is evaluated using metrics like cover-
age ratio, packet delivery ratio, and latency (see Table ??
and Fig. ??).

B. Scientific Rationale

The RL agent is trained using the Proximal Policy Optimiza-
tion (PPO) algorithm, selected for its stability and efficiency
in continuous action spaces. The reward function at time ¢ is
defined as:

Ri=a-C;—B-Li —v- By (D

where C; is the coverage ratio, L; is the average latency,
By is the bandwidth overhead, and «, (3, v are tunable weights.
This formulation encourages the agent to prioritize wide, low-
latency coverage while minimizing bandwidth inefficiencies.

C. Paper Organization

The rest of the paper is structured as follows: Section II
reviews related work on HAP networks and Al in disaster
communication. Section III outlines the system architecture.
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Section IV details the RL framework. Section V describes
the simulation setup. Section VI presents results and analysis.
Section VII discusses the prototype implementation. Section
VIII concludes with future directions.

II. RELATED WORK

Disaster communication systems have traditionally relied
on terrestrial infrastructure, which is highly vulnerable during
natural calamities. Satellite systems offer broader coverage
but are hindered by high latency, limited bandwidth, and
deployment costs [5]. UAVs have emerged as agile, low-
cost alternatives capable of forming Flying Ad Hoc Networks
(FANETS) for temporary connectivity [6], though they face
limitations such as short flight duration, payload constraints,
and unstable links due to mobility [7].

High-Altitude Platforms (HAPs), operating in the strato-
sphere, offer a promising middle ground with wide-area cov-
erage and low latency. Recent work has explored their use in
emergency and rural communication [8]. However, challenges
remain:

o Spectrum Interference: Shared spectrum with terrestrial
systems leads to interference and reduced SINR [9].

o Rigid Resource Allocation: Most HAP systems rely
on static or rule-based allocation, lacking adaptability to
dynamic conditions.

o Coordination Complexity: Managing multiple HAPs in
disaster zones requires intelligent orchestration to avoid
redundancy and ensure optimal coverage.

Al, particularly Reinforcement Learning (RL), has shown
strong potential in wireless communication tasks such as spec-
trum access, power control, and user association [10], [11].
Deep RL algorithms like DQN and PPO learn optimal poli-
cies through interaction with dynamic environments, making
them suitable for disaster scenarios. Decentralized RL models
further enhance scalability by enabling autonomous decision-
making at individual nodes [11]. However, these approaches
are largely focused on terrestrial or UAV networks and do not
address the unique mobility and altitude dynamics of HAP
systems.

A. Gap Analysis

Despite advances in Al-driven wireless systems, RL inte-
gration with HAP networks for disaster relief remains under-
explored. Existing frameworks lack adaptive learning mecha-
nisms to respond to real-time variations in user density, terrain,
and infrastructure damage. Furthermore, most RL-based mod-
els assume static environments, limiting their applicability to
mobile, high-altitude platforms.

This work addresses these gaps by introducing an RL-
powered HAP communication framework capable of real-time
bandwidth and coverage optimization. The system is designed
for autonomous operation in disaster scenarios, adapting to
environmental feedback and user demand to maintain resilient
and efficient communication.

III. SYSTEM ARCHITECTURE

The proposed system architecture is designed to provide
resilient, adaptive, and intelligent communication support
in disaster-stricken regions using High-Altitude Platforms
(HAPs) integrated with reinforcement learning (RL)-based
control. Fig. 1 illustrates the overall architecture.

Emergency Dowlink Upliﬁk

responder \ /

Centralized or distributed

loT control unit with RL agent

sensor

Fig. 1. Proposed HAP-Assisted Disaster Relief Communication Architecture

A. System Components

1) HAP Nodes with Communication Payloads: Each HAP
is equipped with a multi-mode communication payload capa-
ble of switching between Super Macro Base Station (SMBS),
Relay Station (RS), and Reconfigurable Intelligent Surface
(RIS) modes to balance energy consumption and coverage
[12]. These payloads support 5G/6G technologies, including
massive MIMO and beamforming, enabling direct communica-
tion with ground terminals without specialized receivers [13].

2) Ground Terminals: Ground terminals include mobile
devices used by emergency responders, IoT sensors for envi-
ronmental monitoring, and fixed communication nodes. These
terminals form the user base whose demand and mobility
patterns influence the RL agent’s decisions [14], [15].

3) Control Unit with RL Agent: A centralized or distributed
control unit hosts the RL agent responsible for dynamic re-
source allocation. The agent observes system states (e.g., user
density, SINR, HAP load) and takes actions such as bandwidth
reallocation and beam steering. For scalability, we adopt a
hybrid architecture: centralized training with decentralized
execution, inspired by DistRL [16].

B. Communication Model

1) Uplink and Downlink Channels: The communication
model supports bi-directional data flow:

o Uplink: Ground terminals transmit sensor data, distress

signals, and location updates to HAPs.

o Downlink: HAPs broadcast alerts, coordinate rescue op-

erations, and relay internet access.
We adopt a hybrid OFDMA/NOMA scheme to maximize
spectral efficiency under varying load conditions [17].

2) Inter-HAP Coordination: HAPs coordinate via high-
speed optical or mmWave links to avoid coverage overlap
and interference. A distributed consensus protocol ensures
seamless handover and load balancing across HAPs [8].
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C. Assumptions and Environmental Modeling

The following assumptions are considered to simulate real-
istic disaster scenarios:

o Terrain: Mixed urban-rural topology with partial infras-
tructure collapse.
o User Density: Non-uniform distribution with hotspots
near shelters and hospitals.
o Mobility Patterns: Modeled using real-world human
mobility datasets and smart card data [18].
o Failure Zones: Defined as regions with zero terrestrial
connectivity, dynamically updated during simulation.
These assumptions are encoded into the simulation envi-
ronment using NS-3 and MATLAB, enabling the RL agent to
learn policies that generalize across diverse disaster conditions.

IV. REINFORCEMENT LEARNING FRAMEWORK

The HAP-assisted communication problem is formulated
as a Markov Decision Process (MDP) to support adaptive
and intelligent resource allocation in disaster-stricken envi-
ronments. The reinforcement learning (RL) agent learns to
optimize bandwidth and coverage in real-time by interacting
with a simulated environment.

A. Problem Formulation

The MDP is defined by the tuple (S, A, P, R, ), where:
o State Space S: Each state s, € S at time ¢ includes:
— User demand distribution D;
— Signal quality metrics (e.g., SINR) Q;
— HAP positions P,
— Current bandwidth usage B,
« Action Space 4: The agent selects actions a; € A such
as:
— Bandwidth reallocation across beams
— Beam steering direction and width
— HAP repositioning in 3D space
o Reward Function R(s, a;): Designed to balance multi-
ple objectives:

Ri=a-C;—p-Li—v-1; 2

where C} is the coverage ratio, L, is the average latency,
1I; is the interference level, and «, 3,y are tunable weights
[19], [20].

B. RL Algorithm Selection

We adopt the Proximal Policy Optimization (PPO) algo-
rithm due to its stability and sample efficiency in continuous
action spaces. PPO uses a clipped surrogate objective to
prevent large policy updates, ensuring stable learning [21],
[22]. The PPO objective is:

LCLIP(Q) = Et [mln (?”t(a)At, Clip(rt(9)7 1-— €, 1+ G)At>J
3)
is the probability ratio and A, is

where r4(6) = %

the advantage estimate.

C. Training Methodology

We implement the environment using NS-3 for network sim-
ulation and Python (with Stable-Baselines3) for RL training.
The environment models:

« Dynamic user mobility using real-world datasets [18]
¢ Varying terrain and failure zones
o Realistic channel models (urban macro, rural)

1) Convergence Criteria and Hyperparameters: Training is
considered converged when the moving average of the reward
stabilizes over 100 episodes. Key hyperparameters include:

o Learning rate: 3 x 10~*
¢ Discount factor v: 0.99

¢ Clipping parameter e: 0.2
o Batch size: 2048

o Epochs per update: 10

These values are tuned using grid search and validated
across multiple disaster scenarios.

Algorithm 1 PPO for HAP Resource Allocation
0: Initialize policy 7y and value function Vj each iteration
. Collect trajectories { (s, at, ¢, St4+1)} using g
: Compute advantage estimates Ay
. Update 6 using clipped objective L (9)
. Update ¢ by minimizing value loss =0

(==l -)

2) Algorithm Pseudocode: This framework enables the
agent to learn robust policies that generalize across diverse
disaster conditions and user behaviors.

V. SIMULATION SETUP

A comprehensive simulation environment integrating
network-level and agent-level modeling is developed for eval-
uating the performance of the proposed HAP-assisted disaster
communication framework with reinforcement learning (RL)-
based resource allocation.

A. Tools Used

We employed a hybrid simulation stack combining:

e NS-3: A discrete-event network simulator used to model
wireless communication protocols, HAP-ground links,
and inter-HAP coordination [23].

« Python (Stable-Baselines3): Used for training and eval-
uating the RL agent using Proximal Policy Optimization
(PPO) [24].

« MATLAB/Simulink (Optional): For visualizing mo-
bility traces and validating control policies in a co-
simulation environment [25].

B. Scenario Design

We modeled a disaster-affected region with mixed urban
and rural topology. The simulation environment includes:
o User Distribution: Non-uniform, with high-density clus-
ters near shelters and hospitals. Mobility patterns are
derived from real-world datasets such as MobiVerse [24].
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o Failure Zones: Defined as areas with complete terres-
trial infrastructure collapse. These zones are dynamically
updated to simulate cascading failures [26].

o« HAP Deployment: Three HAPs are initialized at 20
km altitude with overlapping coverage zones. Each HAP
is equipped with directional antennas and beamforming
capabilities.

C. Performance Metrics

The following metrics are used to evaluate system perfor-

mance:

o Coverage Ratio (C}): The percentage of active users
within the effective communication range of at least one
HAP.

o Bandwidth Utilization (B;): Ratio of allocated to avail-
able bandwidth, indicating spectral efficiency.

« Latency (L;): Average end-to-end delay for data packets,
including queuing and propagation delays [27].

o Packet Delivery Ratio (PDR): Ratio of successfully
delivered packets to total transmitted packets, reflecting
reliability [28].

o Convergence Time (7.): Number of episodes required
for the RL agent to stabilize its policy, measured by
reward variance.

D. Simulation Parameters

Table I summarizes the key simulation parameters.

TABLE 1

SIMULATION PARAMETERS
Parameter Value
Simulation Area 10 X 10 km
Number of HAPs 3
User Devices 500-2000 (variable)
Mobility Model Random Waypoint + Hotspot Bias
Bandwidth per HAP | 100 MHz
RL Algorithm PPO (Stable-Baselines3)
Training Episodes 10,000

This simulation setup enables a realistic and scalable evalu-
ation of the proposed system under diverse disaster conditions.

VI. RESULTS AND ANALYSIS

This section presents the performance evaluation of the
proposed HAP-assisted disaster communication system with
reinforcement learning (RL)-based resource allocation. We
compare our approach against a baseline static allocation
method and analyze key performance metrics under varying
disaster scenarios.

A. Baseline Comparison: Static vs. RL-Based Allocation

The RL-based dynamic allocation is compared with a static
allocation scheme—where bandwidth and beam directions re-
main fixed throughout the simulation—to highlight the benefits
of adaptive learning. As shown in Table II, the RL-based
system significantly outperforms the static baseline in all key
metrics.

These results align with findings in recent studies that
emphasize the adaptability of RL in dynamic environments
[29], [30].

TABLE II
PERFORMANCE COMPARISON: STATIC VS. RL-BASED ALLOCATION
Metric Static Allocation | RL-Based Allocation
Coverage Ratio (%) 68.2 91.4
Bandwidth Utilization (%) 54.7 83.9
Average Latency (ms) 112.5 64.3
Packet Delivery Ratio (%) 72.1 94.6

B. Graphical Analysis

1) Coverage Over Time: Fig. 2 shows the evolution of
coverage ratio over time. The RL agent quickly learns to
reposition HAPs and reallocate bandwidth to maximize user
coverage, especially during peak demand periods.

Coverage Ratio vs. Time for Static and RL-Based Allocation
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Fig. 2. Coverage Ratio vs. Time for Static and RL-Based Allocation

2) Bandwidth Efficiency Under Load: Fig. 3 illustrates
bandwidth utilization under varying user loads. The RL-based
system maintains high efficiency even as the number of users
increases, consistent with results from adaptive multipath
routing studies [31].

Bandwidth Utilization vs. User Load
100 T T T
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Fig. 3. Bandwidth Utilization vs. User Load

3) Reward Progression During Training: Fig. 4 shows the
average episodic reward during training. The agent converges
after approximately 6,000 episodes, indicating stable policy
learning.

C. Discussion

1) Strengths: The proposed system demonstrates:

1626



Reward Progression During PPO Training
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Fig. 4. Reward Progression During PPO Training

o High adaptability to dynamic user distributions and net-
work failures.

o Efficient use of bandwidth and reduced latency.

o Robust convergence of the RL agent under diverse sce-
narios.

2) Limitations and Edge Cases: Despite its strengths, the
system has limitations:

o Initial training requires significant computational re-
sources.

o Performance may degrade in highly non-stationary envi-
ronments without retraining.

o Real-time deployment requires lightweight inference
models.

3) Scalability and Real-World Feasibility: The architecture
is scalable to larger HAP constellations and user bases. How-
ever, real-world deployment must address:

o Safety constraints and regulatory compliance.

o Real-time sensor integration and edge inference.

o Transfer learning to adapt pre-trained models to new
disaster zones [32], [33].

VII. PROTOTYPE IMPLEMENTATION

A prototype is developed using a hardware-in-the-loop
(HIL) testbed integrated with software-defined radios (SDRs)
and real-time decision-making modules to validate the feasibil-
ity of the proposed HAP-assisted communication framework.
This section outlines the architecture, integration methodology,
and lessons learned from the implementation.

A. Hardware-in-the-Loop Testbed

The HIL testbed emulates a disaster-stricken communication
environment by combining physical SDR hardware with a vir-
tualized network simulation layer. Inspired by the architecture
in [34], [35], our testbed includes:

o A real-time controller executing the RL agent.

o Emulated HAP nodes using containerized network func-
tions.

o Ground terminals simulated via NS-3 with mobility
traces.

The testbed supports dynamic reconfiguration of network
topologies and real-time feedback loops, enabling accurate
performance evaluation under varying disaster conditions.

B. Integration with SDRs and HAP Emulators

We used Universal Software Radio Peripheral (USRP) de-
vices as the physical layer interface for HAP-ground commu-
nication. The SDR stack was implemented using GNU Radio,
allowing flexible modulation, demodulation, and beamforming
control [36], [37]. The HAP emulator simulates altitude, beam
direction, and antenna gain, which are updated based on the
RL agent’s actions.

HAP Emulator

e

Real-time
controller
State —»
I
i

SDR

Wireless
signals

Ground Terminals

Fig. 5. Prototype Architecture: HIL Testbed with SDR and RL Integration

C. Real-Time Decision-Making Demonstration

The RL agent, trained offline using PPO, was deployed on
an edge computing unit connected to the USRP. During live
tests, the agent:

e Monitored user density and SINR in real time.

o Adjusted bandwidth allocation and beam direction every

5 seconds.
o Maintained latency below 50 ms and coverage above
90%.

This real-time decision-making capability aligns with recent

advances in edge-based RL for autonomous systems [38], [39].

D. Lessons Learned

Several insights emerged from the prototype implementa-

tion:

e Modularity is critical: Decoupling the RL agent from
the SDR stack enabled rapid iteration and debugging.

o Latency bottlenecks: Real-time inference required
model compression and quantization to meet timing con-
straints.

o Hardware variability: Environmental interference and
hardware jitter introduced noise, necessitating robust pol-
icy training.

o User feedback: Involving end-users in testing improved
system usability and highlighted edge-case behaviors
[40].

These findings underscore the importance of iterative proto-

typing and co-design in deploying Al-driven communication
systems in real-world disaster scenarios.
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VIII. CONCLUSION AND FUTURE WORK [14]

This paper introduced a novel HAP-assisted disaster com-  [15]
munication system powered by reinforcement learning (RL)
for real-time bandwidth and coverage optimization. Using
Proximal Policy Optimization (PPO), the system demonstrated [17]
significant improvements in coverage, latency, and efficiency
over static methods. A hardware-in-the-loop prototype vali- (18]
dated its real-time adaptability.

For real-world deployment, the framework shows strong [19]
potential for integration with emergency response agencies and 5
edge computing infrastructure. Future work will focus on:

[16]

o Multi-agent RL: Coordinating HAP swarms using de- 55
centralized control for scalable and cooperative decision-
making. (22]

o Hybrid Integration: Combining HAPs with satellite and
terrestrial fallback systems to ensure seamless connectiv-  [23]
ity and robust failover.

e Security and Privacy: Implementing encrypted com- [24]
munication, blockchain-based audit trails, and privacy-
preserving RL techniques to protect sensitive data. (25]

These advancements aim to make the system not only [26]
intelligent and resilient but also secure and deployment-ready

. . 27
for real-world disaster scenarios. 271
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