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Abstract—In this study, we aim to extract features from voice
data of elderly individuals obtained through a life-logging appli-
cation and evaluate mild cognitive impairment (MCI). Using the
life-logging application, we collected approximately one month of
voice data from 24 elderly participants (12 married couples, all
aged 65 and over), and extracted features for the classification of
MCI. As a result, sparse modeling outperformed other models in
classification accuracy, achieving a score of 0.73. Furthermore,
silent periods, shimmer, and filler duration were found to be
important features for distinguishing MCI.

Index Terms—Dementia, Early detection of dementia, Elderly
people, Life-logging application,

With the advancement of an aging society, it is estimated
that approximately 50 million people worldwide are currently
affected by Alzheimer’s disease or dementia, and this number
is expected to double every 20 years [1]. Dementia has
become one of the major challenges in an aging society. Early
detection of dementia offers significant benefits, including
preparing caregiving environments, enhancing understanding
of the condition, and slowing its progression.

Diagnosing dementia typically requires medical visits and
examinations, which can be burdensome for both healthcare
providers and elderly individuals. According to the Global De-
terioration Scale, mild cognitive impairment (MCI) is defined
as meeting two or more of the following seven criteria: diffi-
culty remembering the date and time when visiting unfamiliar
places, problems performing work tasks, difficulty recalling
words or names, difficulty remembering sentences, inability
to remember the names of introduced people, losing items,
and decreased concentration [2].

One example of research aimed at the early detection of
dementia is the use of blood biomarkers [3]. Biomarkers are
objective indicators of disease status, obtained from body
fluids or imaging tests. Blood tests can detect certain proteins
that are considered to be associated with the development of
Alzheimer’s disease. Although cognitive function tests such
as the MMSE (Mini-Mental State Examination) and MoCA-
J (Japanese version of the Montreal Cognitive Assessment)
are available to objectively evaluate cognitive function through
scoring, it remains difficult to distinguish between mild cogni-
tive impairment (MCI) and normal age-related decline. Addi-
tionally, examinees may try to mask their symptoms, making
it hard to detect early signs.

Furthermore, when symptoms of dementia are identified,
caregivers, who are family members of dementia patients, also
experience a significant burden [4]. A negative correlation has
been reported between health status and caregiving burden,
with a correlation coefficient of -0.54 and a p-value less than
0.001. In addition to the overall caregiving burden, negative

correlations were also observed for objective burden, stress-
related burden, and interpersonal burden. Specifically, the
correlation coefficients were -0.65 (p < 0.001) for health
versus objective burden, -0.41 (p = 0.001) for health versus
stress-related burden, and -0.29 for health versus interpersonal
burden.

Currently, attempts are being made to reduce caregiver bur-
den through the intervention of robots in caregiving settings.
In some studies, voices recorded during MMSE tests and
conversations with humanoid robots were analyzed, and the
differences in voice features between healthy participants and
MCI patients were examined [5]. The results indicated sig-
nificant differences in speech duration, response time, silence
duration, and voice fluctuation.

To reduce the burden on the elderly, a life-logging applica-
tion has been developed. One of the early symptoms of de-
mentia is emotional instability and reduced facial expressive-
ness [6]. One study using a life-logging application analyzed
recorded data to infer the mood of elderly participants based on
their facial expressions. The study classified mood into three
categories—negative, neutral, and positive—and examined the
relationship between facial expression features and mood. In
addition, this application records users’ responses to simple
questions and collects voice data [7].

In the early stages of cognitive decline, mood fluctuations
and difficulties in speech or understanding conversations may
appear. Therefore, to objectively assess cognitive decline,
it is necessary to examine the relationship between voice
characteristics and cognitive function.

In this study, we aim to extract features from elderly individ-
uals’ voice data obtained through the life-logging application
and evaluate mild cognitive impairment.

I. PROPOSED SYSTEM

Fig. 1: System Overview

First, we introduce the system and operational aspects of
the life-logging application. An overview of the system is
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presented in Fig. 1. This application, developed using Unity
for Android devices, is designed to record both facial expres-
sions and voice. Users are only required to respond to daily
questions presented via voice and text. Basic user information,
as well as the start and end dates of the logging period, can
be set by the administrator before the device is handed over to
the user. Each day the user answers a question, a mark appears
on a calendar within the app, allowing users to visualize their
activity history and maintain motivation. Once the application
begins asking a question, it starts recording, and the user’s
facial expression, voice, and response are saved. Voice is
recorded and saved using Unity’s built-in functionality. How-
ever, since Unity does not provide built-in video recording for
facial expressions—only still images—OpenCV’s VideoWriter
is used to convert a series of still images into video, which
is then saved. Audio and video data are initially saved in
.wav and .avi formats, respectively. Due to their large file
sizes, these are not suitable for long-term storage, so they are
subsequently compressed and saved in .mp3 and .mp4 formats.
Recorded data is stored in the local storage of the device.
Whether the user has answered the day’s questions is stored
in the cloud using Firebase Realtime Database. Administrators
can access the cloud from an administrator device to review
user activity logs, enabling them to customize future questions
based on each user’s response frequency.

A total of 14 types of acoustic features were extracted:
fundamental frequency, intensity (loudness), chroma features,
mel-frequency cepstral coefficients (MFCC), utterance dura-
tion, speech rate, silent duration, silence rate, filler duration,
filler rate, zero-crossing rate, response time, jitter, and shim-
mer. An overview of each feature is presented in Table I.

Since the Life-Logging Application covers approximately
one month per participant, we computed the average, maxi-
mum, minimum, and variance for each feature per individual.
We then examined the relationships between these features and
the MMSE and MoCA-J scores, as well as correlations among
the features themselves.

In this study, MCI was defined as an MMSE score of
27 or lower and a MoCA-J score of 25 or lower, and
hypothesis testing was conducted for 13 healthy participants
and 11 participants with MCI. Based on the hypothesis tests,
the t-statistic, p-value, mean difference, and 95% confidence
interval were calculated for each feature to examine whether
there were significant differences.

Next, we applied machine learning techniques to classify
individuals with cognitive decline based on the extracted
acoustic features. For classification, the groups were defined
in the same manner as in the hypothesis testing: participants
with an MMSE score ≦ 27 and a MoCA-J score ≦ 25 were
classified as MCI, yielding 13 healthy participants and 11 par-
ticipants with MCI. Four classification algorithms were used:
k-nearest neighbors, support vector machine (SVM), random
forest, and sparse modeling. We investigated which algorithm
achieved the highest classification accuracy. In addition, for
the sparse modeling approach, we analyzed the importance of
each acoustic feature in contributing to the classification.

The KNN method determines the class of a new data
point by majority vote or average value. When a new data
point is given, KNN refers to the K nearest neighbors. For
classification problems, the data point is assigned to the class
that occurs most frequently among the K neighbors. For
regression problems, the average value of the K neighbors
is used as the predicted value. In this study, classification
is performed using majority vote. The advantages of KNN
include immediate processing of new data and adaptability to

high-dimensional or nonlinear data. However, disadvantages
include high computational cost for large datasets and reduced
effectiveness in very high-dimensional spaces. In this study,
K=5 is used.

SVM seeks a hyperplane that maximally separates data
points of different classes. A larger margin allows higher
classification accuracy for new data. SVM can be linear or
nonlinear. Linear SVM is used when the data can be separated
by a straight line or plane. Nonlinear SVM is used when the
data cannot be linearly separated, employing kernel methods
to enable linear separation in a transformed feature space.
SVM is effective for high-dimensional data and helps prevent
overfitting but can be computationally expensive, similar to
KNN. In this study, linear SVM is used with C=1.0 and
random state=42. Here, C is the regularization parameter, and
random state fixes the seed for random number generation.

Random Forest combines multiple decision trees for predic-
tion. Each decision tree is constructed using a random subset
of features, preventing over-reliance on specific features. For
classification, the final result is determined by majority vote
across all trees. Random Forest provides high accuracy and
identifies important features but is not suitable for real-time
processing. In this study, the parameters are n estimators=100
and random state=42.

Sparse modeling suppresses the influence of unnecessary
features and selects only important features. This includes
Lasso regression, which uses L1 regularization to set irrelevant
feature coefficients to zero; compressed sensing used in signal
and image processing; sparse principal component analysis
with L1 regularization; and sparse representation for high-
dimensional data. In this study, Lasso regression is used with
random state=42 and α = 0.01, where α controls the degree
of sparsity.

Twenty percent of the data was used as the test set and
eighty percent as the training set to perform a single classifi-
cation. At the same time, cross-validation was conducted. In
cross-validation, the data was split into five folds, with one
fold used as the test set and the remaining four folds used as
the training set. This procedure was repeated five times, i.e.,
a 5-fold cross-validation was performed.

TABLE I: Extracted Acoustic Features

Feature Name Description
Fundamental frequency The lowest frequency component in the

speech signal
Intensity (loudness) The amplitude of the sound
Chroma features Representation of the signal’s fre-

quency in 12 semitone bins
MFCC Coefficients obtained by applying the

discrete Fourier transform to a mel
spectrum

Utterance duration Duration of voiced segments
Speech rate Ratio of utterance duration to total re-

sponse time
Silent duration Duration of unvoiced (silent) segments
Silence rate Ratio of silent duration to total re-

sponse time
Filler duration Duration of filler words (e.g., ”um”,

”uh”) during speech
Filler rate Ratio of filler duration to total response

time
Zero-crossing rate Number of times the signal’s amplitude

crosses the zero axis
Response time Time between the end of the question

and the start of the response
Jitter Irregularity in pitch
Shimmer Irregularity in amplitude
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II. RESULTS

The correlation matrix between each acoustic feature and
the MMSE and MoCA-J scores is shown in Figure 1.

(a) Mean (b) Maximum

(c) Minimum (d) Variance

Fig. 2: Correlation matrices between each feature and cogni-
tive test scores

First, positive correlations were observed between MMSE
and MoCA-J scores for all measures, including mean, maxi-
mum, minimum, and variance. This is likely because higher
scores on each test indicate normal cognitive function, whereas
lower scores suggest the possibility of dementia-related symp-
toms. For the average values of each feature, positive corre-
lations were found between jitter and chroma features, filler
duration and speech duration, and shimmer and silent rate. In
contrast, a negative correlation was observed between speech
rate and shimmer. For the maximum values, in addition to
this negative correlation, a negative correlation also appeared
between filler rate and intensity. For the minimum values,
a strong positive correlation was observed between filler
duration and filler rate, while a negative correlation emerged
between speech rate and MFCC.

The results of the hypothesis tests conducted for each
feature are shown in Table II.

TABLE II: Results of hypothesis testing for each feature

feature t stat p value mean diff ci lower ci upper
F0 mean -0.0206 0.9838 -0.3594 -34.5429 33.8241
RMS mean 0.3973 0.6951 0.0007 -0.0027 0.0040
Chroma mean 0.4661 0.6473 0.0116 -0.0372 0.0604
MFCC mean -0.2139 0.8327 -0.2558 -2.5998 2.0882
Speech time -2.0128 0.0702 -1.2253 -2.4185 -0.0321
Speech rate -2.1297 0.0524 -0.1380 -0.2650 -0.0110
Silent duration -0.4989 0.6270 -0.5177 -2.5516 1.5162
Silent ratio 2.1297 0.0524 0.1380 0.0110 0.2650
Filler length -0.8100 0.4308 -0.0636 -0.2175 0.0903
Filler ratio -0.2875 0.7764 -0.0024 -0.0187 0.0139
ZCR mean -0.1308 0.8974 -0.0009 -0.0138 0.0121
Reaction time 0.4267 0.6751 0.0502 -0.1805 0.2809
Jitter -0.3281 0.7473 -0.1717 -1.1972 0.8539
Shimmer 2.0156 0.0587 0.2864 0.0079 0.5650

In all features, none of the p-values fell below 0.05. How-
ever, Speech rate, Speech time, Shimmer, and Silent ratio, al-
though exceeding 0.05, were below 0.1, indicating a tendency
toward significance. We then examined the mean differences
of these features showing such tendencies. Speech rate had
a negative mean difference, while Silent ratio had a positive
one. This suggests that individuals with MCI tend to spend
less time speaking and exhibit longer silent periods. It can

be inferred that language processing becomes more difficult,
leading to hesitations or pauses during speech. Similarly,
Speech time, like Speech rate, showed a negative mean differ-
ence, implying that individuals with MCI may find it difficult
to sustain speech and often stop mid-sentence. On the other
hand, Shimmer had a positive mean difference, suggesting
that individuals with MCI have more difficulty maintaining
stable vocal intensity compared to healthy controls. Regarding
the confidence intervals, both the upper and lower bounds
of Speech time and Speech rate were negative, while both
bounds of Silent ratio and Shimmer were positive. Although
the sample size in this study was small and no feature
reached complete statistical significance, these results suggest
that temporal speech-related features and certain voice-quality
measures may be associated with the detection of MCI.

Next, the classification reports for each learning method are
shown in Tables IIIa to IIId.

TABLE III: Classification results of different methods

(a) k-NN

precision recall f1-score support
0 0.58 0.88 0.70 8
1 0.67 0.29 0.40 7

accuracy 0.60 15
macro avg 0.62 0.58 0.55 15

weighted avg 0.62 0.60 0.56 15

(b) SVM

precision recall f1-score support
0 0.83 0.62 0.71 8
1 0.67 0.86 0.75 7

accuracy 0.73 15
macro avg 0.75 0.74 0.73 15

weighted avg 0.76 0.73 0.73 15

(c) Random Forest

precision recall f1-score support
0 0.75 0.75 0.75 8
1 0.71 0.71 0.71 7

accuracy 0.73 15
macro avg 0.73 0.73 0.73 15

weighted avg 0.73 0.73 0.73 15

(d) Sparse Modeling (Lasso)

precision recall f1-score support
0 0.83 0.62 0.71 8
1 0.67 0.86 0.75 7

accuracy 0.73 15
macro avg 0.75 0.74 0.73 15

weighted avg 0.76 0.73 0.73 15

Looking at the results of KNN shown in Table IIIa, the
accuracy was 0.60. While the recall for healthy controls was
0.88, indicating that they were classified relatively accurately,
the recall for individuals with MCI was only 0.29, showing
that they were barely identified.

In contrast, for SVM, Random Forest, and Sparse Modeling,
the accuracy was 0.73, slightly higher than that of KNN.
Moreover, for both healthy controls and individuals with MCI,
recall remained at least 0.6 or higher. These three methods
were able to classify more accurately than KNN, even with
the limited sample size.

Table IV shows the features with the highest importance
when classification was performed using Random Forest.

Since all importance scores were below 10%, it can be
inferred that the classification was not driven by a small
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TABLE IV: Feature Importances

Feature Importance
Shimmer 0.0933
Speech rate 0.0926
ZCR mean 0.0913
Jitter 0.0847
F0 mean 0.0768
Speech time 0.0717
RMS mean 0.0709
Silent ratio 0.0704
Chroma mean 0.070

number of dominant features, but rather by the combined
contribution of multiple features. Among the features with
high importance were Shimmer and Jitter, indicating that indi-
viduals with MCI tend to have less stability in their voice. In
addition, consistent with the results of the hypothesis testing,
Speech rate, Silent ratio, and Speech time also ranked among
the top features in terms of importance.

The following figures show the classification results of the
k-nearest neighbors method (Figure 3a), SVM (Figure 3b),
Random Forest (Figure 3c), and sparse modeling (Figure 4).

(a) k-Nearest Neighbors (b) Support Vector Machine

(c) Random Forest (d) Sparse Modeling

Fig. 3: Classification results for each algorithm

Although individuals exhibiting dementia symptoms were
correctly classified using k-nearest neighbors, Random Forest,
and Sparse Modeling, the classification accuracy for cogni-
tively healthy individuals was relatively lower. Figure 4 shows
the feature importance derived from Sparse Modeling.

Fig. 4: Regression coefficients of each feature

In the classification using Sparse Modeling, Shimmer con-
tributed the most in the negative direction among all features.

In addition to Shimmer, intensity also contributed negatively,
while zero-crossing rate and silent duration contributed posi-
tively.

As a result of cross-validation, the accuracy of the k-nearest
neighbors method was 0.4552 ± 0.1325, that of SVM was
0.7467±0.1431, that of Random Forest was 0.4829±0.1679,
and that of Sparse Modeling was 0.6505±0.1054. In the single
validation test, SVM, Random Forest, and Sparse Modeling
showed the same accuracy; however, after performing cross-
validation, SVM achieved the highest accuracy. Nevertheless,
the standard deviations were relatively large across all models
constructed in this study.

III. CONCLUSION

Using speech data from the life-logging application, we
extracted features to evaluate their relationship with dementia
symptoms.

By applying SVM and sparse modeling, relatively accurate
classification was achieved using only the recorded “a i u e o”
utterances from a tablet device. Additionally, both hypothesis
testing and machine learning analyses showed that features
such as volume and fundamental frequency were not strongly
associated with dementia symptoms. However, it was observed
that voice stability measures, such as Shimmer and Jitter,
tended to be unstable, and participants with MCI exhibited
frequent pauses and longer silent periods while thinking.
Although participants with dementia were correctly classified,
the classification accuracy for healthy participants was low.
Therefore, future work should focus on developing methods
that reduce false positives for healthy individuals. Furthermore,
since the current study included only 24 participants, the
models were unstable; thus, classification using a larger sample
size is necessary.
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