Performance Analysis of RSMA-Based MU-MISO LEO Satellite Downlink System with Imperfect CSI

Seonghyun Kim*, Kunju Kim[†], Suho Shin*, Kyoung-Jae Lee[†]
Department of Electronic Engineering, Hanbat National University, Daejeon, Korea*
School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, Korea[†]
30242762@edu.hanbat.ac.kr, golho2006@naver.com, tlstngh859@naver.com, kyoungjae@cau.ac.kr

Abstract—This paper studies rate-splitting multiple access (RSMA) for a multi-user multiple-input single-output downlink channel comprising an M-antenna transmitter and K single-antenna user equipments in low Earth orbit (LEO) satellite systems under imperfect channel state information. We model the proposed system and conduct a comparative analysis of RSMA and spatial division multiple access (SDMA) in terms of sum spectral efficiency (sum-SE) and sum energy efficiency (sum-EE) with respect to transmit power. Simulation results demonstrate that RSMA outperforms SDMA in sum-SE and sum-EE.

Index Terms—Rate-splitting multiple access, low Earth orbit satellite, imperfect channel state information.

I. INTRODUCTION

To enable global coverage in 6G, non-terrestrial networks particularly low Earth orbit (LEO) satellites offering low latency and high data rates have attracted considerable interest. Multi-user multiple-input single-output (MU-MISO) is one of the essential techniques for supporting high-mobility users in LEO systems by enhancing link reliability and capacity under rapid channel variations and severe path loss. However, accurate channel state information (CSI) remains a key challenge due to satellite mobility, fading, and large path loss [1].

Rate-splitting multiple access (RSMA) has been proposed as a promising solution to address these issues, offering greater flexibility in interference management and power allocation by splitting common and private streams [1].

In this paper, we apply the RSMA approach to a LEO satellite-based MU-MISO downlink (DL) system and evaluate its performance in a satellite channel environment, incorporating key features such as shadowed Rician fading, free space path loss, and imperfect CSIT [2], [3]. We conduct a comparative analysis of RSMA and conventional spatial division multiple access (SDMA) with respect to sum spectral efficiency (Sum-SE) and sum energy efficiency (Sum-EE), under varying transmit power levels.

II. SYSTEM MODEL

We consider a RSMA-based MU-MISO DL scenario between a LEO satellite and ground UEs. The satellite serves as a base station and is equipped with M transmit antennas, while each of the K UEs is equipped with a single receive antenna, thereby forming a MU-MISO system [1]–[3]. This overall channel can also be represented as a multiple-input multiple-output channel. During the coherence time T, pilot signals are transmitted for τ_p symbols with power p_p , and data transmission occurs over the remaining duration [1].

This work was supported by the IITP (Institute of Information & Communications Technology Planning & Evaluation)-ITRC (Information Technology Research Center) grant funded by the Korea government (Ministry of Science and ICT) (IITP-2025-RS-2024-00437886).

The wireless channel between the satellite and UEs is modeled as a Rician fading channel with shadow fading components. The channel $\mathbf{H} \in \mathbb{C}^{M \times K}$ is expressed as follows:

$$\mathbf{H} = \sqrt{\frac{\kappa \bar{\chi}}{\kappa + 1}} \mathbf{R}^{\frac{1}{2}} \bar{\mathbf{H}} + \sqrt{\frac{\chi_w}{\kappa + 1}} \mathbf{R}^{\frac{1}{2}} \mathbf{H}_w, \tag{1}$$

where $\left[\bar{\mathbf{H}}\right]_{mk} = e^{-j(m-1)\varphi_k}$ and \mathbf{H}_w denote the deterministic and random components, respectively. $\ln(\bar{\chi}) \sim \mathcal{N}(0, \bar{\sigma}^2)$ and $\ln(\chi_w) \sim \mathcal{N}(0, \sigma_w^2)$ represent the shadow fading component. φ_k is the phase shift introduced by the angle of arrival, the channel is modeled as block fading and remains constant within each coherence interval. $\mathbf{R} = \frac{1}{2\Delta_k} \int_{\theta_k - \Delta_k}^{\theta_k + \Delta_k} e^{-\frac{2\pi}{\lambda}\psi(\alpha)(\mathbf{r}_i - \mathbf{r}_j)} \mathrm{d}\alpha$, where $\mathbf{R} \in \mathbb{C}^{M \times M}$ denotes the spatial correlation matrix obtained from the local scattering model [1]–[3]. θ_k and Δ_k represent the azimuth angle and the angular spread, respectively. The vector ψ corresponds to the wave vector of a planar wave impinging with angle α , λ is the wavelength, and \mathbf{r}_i denotes the position vector of the i-th antenna element [1]. Minimum mean squared error channel estimation is employed as the channel estimation, and the real channel \mathbf{H} is given as follows:

$$\mathbf{H} = \hat{\mathbf{H}} + \tilde{\mathbf{H}},\tag{2}$$

where $\hat{\mathbf{H}} = \left[\hat{\mathbf{h}}_1, \cdots, \hat{\mathbf{h}}_K\right]$ and $\tilde{\mathbf{H}} = \left[\tilde{\mathbf{h}}_1, \cdots, \tilde{\mathbf{h}}_K\right]$ denotes the MMSE channel estimate obtained from pilot signals and the residual error, respectively. And each channel component for user k, follows a complex Gaussian distribution, i.e., $\hat{\mathbf{h}}_k \sim \mathcal{CN}(\mathbb{E}[\hat{\mathbf{h}}_k], \hat{\boldsymbol{\beta}}\mathbf{I}_M), \tilde{\mathbf{h}}_k \sim \mathcal{CN}(0, \tilde{\boldsymbol{\beta}}\mathbf{I}_M)$. In this system, orthogonal pilot sequences of length τ_p are employed, and the condition $\tau_p \geq K$ is required. Furthermore, $\hat{\beta} = \frac{p_p \tau_p \beta^2}{(\kappa+1)(p_p \tau_p \beta+\sigma_n^2)}$ and $\tilde{\beta} = \frac{\beta}{\kappa+1} - \hat{\beta}$ denote the estimated and error channel gains, respectively. κ denotes K-factor component. The pilot length τ_p and a pilot power p_p represent the sounding duration and strength, jointly determining the estimation accuracy.

In the RSMA transmission framework, user messages are split into a common message and individual private messages, and the overall transmit signal is expressed as follows [1]:

$$\mathbf{x} = \sqrt{P_c} \mathbf{w}_c s_c + \sum_{k=1}^K \sqrt{P_{p,k}} \mathbf{w}_{p,k} s_{p,k}, \tag{3}$$

where $P,P_c=(1-t)P$, and $\sum_k P_{p,k}=P-P_c$ represent the total, common, and sum of private transmit powers, respectively. And $t\in(0,1]$ denotes the power splitting ratio for the private stream and is obtained using an exhaustive search method with a step size of 0.05. s_c and $s_{p,k}$ represent the common and private messages, each assumed to have zero mean and unit variance. And

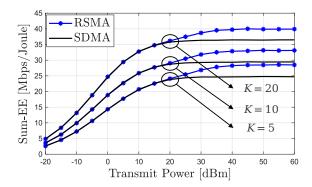


Fig. 1. Sum-SE vs Transmit power (M = 100, 5,000 realizations)

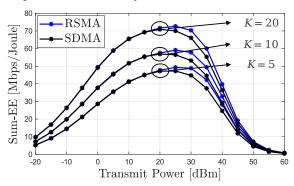


Fig. 2. Sum-EE vs Transmit power (M = 100, 5,000 realizations)

 \mathbf{w}_c and $\mathbf{w}_{p,k}$ denote the precoding vectors, which are designed based on matched beamforming (MBF) and regularized zeroforcing (RZF), respectively. The precoding vector is obtained as

$$\mathbf{W}_{p} = \frac{K}{\text{Tr}(\hat{\mathbf{H}}^{H} \mathbf{N}^{H} \mathbf{N} \hat{\mathbf{H}})} \mathbf{N} \hat{\mathbf{H}}, \ \mathbf{N} = (\hat{\mathbf{H}} \hat{\mathbf{H}}^{H} + M \epsilon \mathbf{I}_{M})^{-1}, \quad (4)$$

$$\mathbf{w}_c = \sum_k a_k \hat{\mathbf{h}}_k,\tag{5}$$

 $\mathbf{w}_c = \sum_k a_k \hat{\mathbf{h}}_k, \tag{5}$ where $\mathbf{W}_p = [\mathbf{w}_{p,1}, \cdots, \mathbf{w}_{p,K}]$ and $\epsilon = \frac{K}{MP}$ and $a_k = \frac{1}{\sqrt{MK}}$ denote normalization factors [1]

At the receiver side, k-th UE receive the signal y_k , and first decode the common messages s_c , and then remove it from received signal via successive interference cancellation before decoding their private messages $s_{p,k}$. The received signal is

$$y_k = \sqrt{P_c} \mathbf{h}_k^H \mathbf{w}_c s_c + \sum_{j=k}^K \sqrt{P_{p,j}} \mathbf{h}_k^H \mathbf{w}_{p,j} s_{p,j} + n_k. \quad (6)$$

After removing the decoded common message, each user decodes private messages. The common stream rate and private stream rate of the k-th UE, as well as the total system sum rate R, are given as follows [1]:

$$R_{c,k} = \log_2 \left(1 + \frac{P_c \left| \mathbf{h}_k^H \mathbf{w}_c \right|^2}{\sum_{j=1}^K P_{p,j} \left| \mathbf{h}_k^H \mathbf{w}_{p,j} \right|^2 + \sigma_n^2} \right), \quad (7)$$

$$R_{p,k} = \log_2 \left(1 + \frac{P_{p,k} \left| \mathbf{h}_k^H \mathbf{w}_{p,k} \right|^2}{\sum_{j \neq k} P_{p,j} \left| \mathbf{h}_k^H \mathbf{w}_{p,j} \right|^2 + \sigma_n^2} \right), \quad (8)$$

$$R = \left(\frac{T - \tau_p}{T}\right) \left[\min_{k} \left\{ R_{c,k} \right\} + \sum_{k=1}^{K} R_{p,k} \right], \tag{9}$$

where $n_k \sim \mathcal{CN}(0, \sigma_n^2)$ denotes additive white Gaussian noise. Energy efficiency represents the data rate that the system can

achieve per unit of energy consumption, and is defined as follows:
$$EE = \frac{BW \times R}{P + P_{circuit}}, \tag{10}$$

where $P_{circuit}$ denotes the fixed circuit power consumption of RF chains, independent of the transmit power [4].

III. SIMULATION RESULT

This section presents the performance evaluation of the proposed RSMA-based LEO satellite system through simulation results averaged over realizations. Simulations are conducted with M=100 transmit antennas and K=5,10,20 UEs. The coherence time T=200 is used, with pilot length $\tau_p=20$ and pilot power $p_p = 25$ [dBm]. A Rician fading channel with Kfactor $\kappa = 10$ [dB], operating at $f_c = 2.4$ [GHz] with BW = 20[MHz]. The satellite altitude is 500 km with a 30-degree elevation angle. Shadowing components are set to $\bar{\sigma}$ =4 [dB] and σ_w =6 [dB]. Noise power is calculated based on the thermal noise formula, and the circuit power $P_{circuit} = 10$ [W]. The spatial correlation matrix is generated based on the model in [1].

Fig. 1 presents the sum-SE comparison between RSMA and SDMA for K = 5, 10, 20 UE as the transmit power. RSMA shows comparable performance to SDMA in the low-power regime, where inter-user interference is limited. However, beyond 20 dBm, RSMA begins to outperform SDMA, achieving up to 20% higher sum-SE. This improvement stems from the use of the common stream in RSMA, which effectively mitigates interference among users, especially in high-SNR scenarios where private stream performance saturates.

Fig. 2 illustrates the sum-EE variation over transmit power for the same K = 5, 10, 20 values. While SDMA reaches its peak sum-EE at 20 dBm, RSMA demonstrates a delayed but higher peak in the 25–30 dBm range. Notably, RSMA maintains equal or higher sum-EE across the transmit power. The observed behavior indicates that RSMA not only improves spectral efficiency but also provides better energy utilization, especially in interferencelimited and high-power conditions.

IV. CONCLUSION

This paper analyzed the performance of RSMA-based MU-MISO LEO satellite DL systems in terms of sum SE and EE. Simulation results show that RSMA outperforms conventional SDMA, particularly in the high-SNR regime, by better managing inter-user interference through its common message structure. These results confirm the potential of RSMA for future satellitebased MU-MISO systems requiring high performances.

REFERENCES

- [1] M. Dai, B. Clerckx, D. Gesbert and G. Caire, "A Rate-Splitting Strategy for Massive MIMO With Imperfect CSIT," *IEEE Transactions on Wireless Communications*, vol. 15, no. 7, pp. 4611 - 4624, Jul. 2016.
 S. Wang, Y. Liu, W. Zhang and H. Zhang, "Achievable Rates of Full-
- Duplex Massive MIMO Relay Systems Over Rician Fading Channels, IEEE Transactions on Vehicular Technology, vol. 66, no. 11, pp. 9825 -9837, Nov. 2017.
- 3GPP, "Study on New Radio (NR) to Support Non-Terrestrial Networks (Release 15)," 3GPP Technical Report 38.811, v15.4.0, Sep. 2020.

 V. K. Gupta, H. Al-Hraishawi, E. Lagunas, and S. Chatzinotas, "Traffic-Aware Satellite Switch-off Technique for LEO Constellations," in *Proc.* IEEE Globecom Workshops, Dec. 2022.