979-8-3315-5678-5/25/$31.00 ©2025 IEEE

ACKurate-DQN: Adaptive Throughput-Based
Congestion Control Using Deep Reinforcement
Learning

Heeju Chae*, Wanseon Lim!, Gosan Noh! and Eunkyung Kim*
*Dept. of Artificial Intelligence, Hanbat National University, Sejong, Korea
heejuchae @edu.hanbat.ac.kr, ekim@hanbat.ac.kr
tFiscal and Economic Policy Intelligence Research Center,
Electronics and Telecommunications Research Institute (ETRI), Daejeon, Korea
wslim@etri.re.kr
iDept. of Electronic Engineering, Hanbat National University, Daejeon, Korea
gsnoh@hanbat.ac.kr

Abstract—ACKurate-DQN is a Deep Q-Network (DON) TCP
controller that replaces hand-tuned Additive Increase, Multiplica-
tive Decrease (AIMD) logic with a single, scale-invariant reward.
A lightweight dual-mode estimator tracks the path’s throughput
ceiling, and the agent automatically balances throughput and
delay to maximize performance, without manual weight tun-
ing. In ns-3 dumbbell-topology tests, ACKurate-DQN sustains
more than 95% link utilization and RTT comparable to a
recent DQN-AIMD baseline across both static links and a
bandwidth-shift scenario with a fixed RTT. This ceiling-aware
feedback stabilizes learning and enables more robust operation
than existing DQN-based AIMD methods.

Index Terms—TCP congestion control, reinforcement learning,
deep Q-network, adaptive throughput estimation

I. INTRODUCTION

Classical Additive Increase, Multiplicative Decrease
(AIMD) controllers [3]-[5] break down when bandwidth or
queuing delay shifts within a few Round-Trip Times (RTTs).
Recent reinforcement learning (RL) approaches adjust the
congestion window proactively, yet still rely on hand-tuned
reward weights, as seen in Aurora [6], TCP-Drinc [7],
and ORC [8]. Instead, Seo and Cho [1] normalize reward
with a self-adjusting throughput ceiling 7},,x so that the
reward remains effective across diverse bandwidth and RTT
conditions. We further refine this ceiling to make the reward
smoother and more responsive.

ACKurate-DQN consistently achieves higher link utilization
while maintaining RTTs comparable to the baseline across
diverse network conditions, outperforming the DQN-based
AIMD baseline [1], [2]. It reuses the neural architecture
proposed by Seo and Cho [1], and adopts the broader action
set introduced in their follow-up work [2]. To the best of our
knowledge, the method proposed by Seo and Cho [1] remains
the most effective RL-based congestion control algorithm im-
plemented in ns—-3, which is also the simulation environment
used in our experiments. The key contributions of this work
are summarized below.

1322

Adaptive reward normalization. We propose a lightweight
dual-mode estimator that infers bandwidth capacity from
both the Exponentially Weighted Moving Average (EWMA)
throughput and the instantaneous throughput, as detailed in
Section III (see Fig. 1). This estimator adjusts the throughput
ceiling T,,x for normalizing the current throughput iy,
which is calculated from ACKed segments during the action
interval, yielding a scale-invariant reward without manual
weight tuning:

TC urr
TIl’l ax

This formulation helps stabilize learning across diverse net-
work conditions.

Comprehensive performance comparison. We evaluate
ACKurate-DQN against a DQN-AIMD baseline [1] across
a wide range of static and dynamic bottlenecks, observing
consistently higher throughput and similar RTT performance.

The rest of the paper is structured as follows: Section II
reviews relevant literature; Section III describes the architec-
ture underlying ACKurate-DQN; Section IV presents our ex-
perimental setup, evaluation methodology, and comprehensive
results and baseline comparisons. Finally, Section V concludes
the paper and outlines potential avenues for future research.

T =

II. RELATED WORK

AIMD legacy. Reno, NewReno, and CUBIC increase cwnd
linearly and halve it upon loss, which can lead to link
under-utilization or queue buildup when capacity fluctuates
rapidly [3], [4], [5].

RL-augmented AIMD. DQN-based AIMD methods [1],
[2] retain AIMD fallbacks for safety: a loss event resets cwnd
to a predefined value, ignoring the network state inferred
by the agent. This delegates the initial recovery step to
AIMD, while the RL agent remains responsible for congestion
prevention and subsequent adjustments.

ICTC 2025

Put parameters in
replay buffer

Yes—* Cwnd = 1MSS

Estmate J—— 5
MaxThroughput

Yes—> Cwnd = Cwnd *0.7

High Throughput
or
Timeout Recovery state

Cwnd Adjustment

No imeHit o
YesT ByleHit Yes

Fig. 1: Overall ACKurate-DQN decision process. Timeout
events trigger conservative cwnd reset, while cwnd is oth-
erwise adjusted via duplicate ACKs or pacing-based policy
updates. Throughput estimation is handled separately and used
for updating 11, .

Pure-RL controllers. Aurora [6] learns the sending rate
directly from delay/throughput traces; TCP-Drinc (DQN) [7]
adjusts cwnd using discrete Q-learning actions; ORC
(actor-critic) [8] accelerates online adaptation using a pre-
trained actor—critic that refines itself in real time. All three
eliminate AIMD fallbacks but still require carefully tuned
reward functions or training curricula to generalize across
network conditions.

III. ACKURATE-DQN DESIGN
A. ACKurate-DQON Decision Workflow and Control Logic

Fig. 1 illustrates the complete decision-making workflow
of ACKurate-DQN. The agent continuously monitors network
feedback and selectively adjusts the congestion window to
respond to both performance dynamics and congestion signals.

a) Throughput Ceiling (Tmax): Every second, the agent
re-evaluates Tiax. If the recent EWMA throughput falls
below Tihax, the ceiling is conservatively reduced. If either
the EWMA throughput or the instantaneous throughput ap-
proaches T,,,«, or the sender is in timeout recovery, the ceiling
is gently increased. This minimalist rule keeps most rewards
7 = Teur/Tmax safely within [0, 1], without requiring explicit
RTT or BDP information.

b) Event-Driven Congestion Window: A retransmission
timeout forces cwnd=1 MSS, while three duplicate ACKs re-
duces it to 0.7 cwnd. Otherwise, whenever the newly acknowl-
edged bytes exceed 1.5 cwnd or the elapsed time surpasses 1.5
RTTs, the RL policy selects the next cwnd. Thus, classical

safety guards are complemented by learned, feedback-aware
adjustments in a few concise lines of code.

B. State, Action, and Reward

State. Each decision uses six scalar inputs: current cwnd,
instantaneous throughput, ACK count, interval At, and
Aurora-style latency gradient and ratio metrics.

Action. The DQN chooses an additive window change from
the set {—10,—3,—1,0, 1, 3, 10}xMSS, allowing both cautious
and aggressive probes.

Reward. A single scale-free metric ¥ = Tty /Tmax € [0, 1]
encourages high utilization while implicitly penalising delay
because queue build-up lowers current throughput.

IV. EXPERIMENTS

A. Experimental Setup

-

Receiver

=

Router B

Sender Router A

Fig. 2: Dumbbell network topology used in our experiments.

All experiments are conducted using ns—3. 36, interfaced
via ns3—gym. The simulated network uses a classical dumb-
bell topology (Fig. 2), in which a TCP sender communicates
with a receiver through two intermediate routers. The leftmost
node acts as the Sender, connected to Router A. This router for-
wards packets over a time-varying bottleneck link to Router B,
which then delivers them to the rightmost node, the Receiver.
Each TCP packet carries a 1460-byte payload. The bottleneck
router uses a DropTail queue with a buffer size equal to 1.5
times the bandwidth—delay product (BDP), allowing controlled
queuing under congestion. The RTT is fixed at 100 ms for all
scenarios.

Two experiments are conducted to evaluate robustness and
adaptability:

o In the first experiment, the bottleneck bandwidth alter-
nates between 25 Mbps and 50 Mbps every 100 seconds,
over a total duration of 300 seconds. This setup evaluates
the agent’s robustness to abrupt bandwidth variations.

e In the second experiment, the agent is tested under
five static bandwidth configurations (5, 25, 50, 75, and
100 Mbps), each lasting 300 seconds. This experiment
assesses adaptability across diverse bandwidth conditions.

In both experiments, the proposed ACKurate-DQN agent is
compared against baseline algorithms. The primary baseline is
a DQN-based congestion control method [2], denoted as DON-
based TCP throughout this paper. It shares the same neural
architecture as ACKurate-DQN, but computes the maximum
throughput based on the current congestion window (cwnd)
and RTT. In contrast, ACKurate-DQN derives throughput
directly from ACK feedback, enabling more responsive adap-
tation to network dynamics.

1323

1e7 Throughput Comparison Over Time

5 --- DQN-ACKurate
—— DQN-based TCP

Throughput

4 50 100 150 200 250 300 350 400
Time (seconds)

Fig. 3: Throughput over time in a dynamic environment where
the bottleneck bandwidth alternates between 25 Mbps and 50
Mbps every 100 seconds. ACKurate-DQN maintains stable
throughput, whereas DQN-based TCP shows a significant dip
around 200 seconds.

B. Results

To evaluate the effectiveness of ACKurate-DQN under
dynamic and diverse network conditions, we compare its
performance against a baseline DQN-based TCP across both
time-varying and static bandwidth scenarios.

Dynamic scenario. Fig. 3 depicts the throughput over time
when the bottleneck bandwidth alternates between 25 Mbps
and 50 Mbps every 100 seconds. Both algorithms generally
adapt well to bandwidth shifts, maintaining high throughput.
However, DQN-based TCP exhibits a sharp drop around the
200-second mark, failing to promptly readjust after a band-
width decrease. In contrast, ACKurate-DQN maintains stable
throughput, quickly adapting to both increases and decreases
in capacity. This highlights its robustness under abrupt network
changes.

Static scenario. Fig. 4 presents results under static band-
width conditions. ACKurate-DQN sustains link utilization at or
above 95% across all capacities, while the baseline dips to 80%
at 75 Mbps. Although ACKurate-DQN shows a modest in-
crease in average RTT (Fig. 4b), its throughput gain more than
makes up for the delay. Overall, throughput ceiling feedback
enables higher utilization without compromising efficiency.

Together, these results demonstrate that ACKurate-DQN
exhibits:

« Robustness: It handles sudden bandwidth changes more
robustly than the baseline.

« Adaptability: It generalizes well across a wide range
of network capacities, avoiding both under- and over-
utilization.

« Efficiency: It achieves high link utilization while main-
taining acceptable RTT, balancing throughput and latency
effectively.

V. CONCLUSION AND FUTURE WORK

We propose ACKurate-DQN, a reinforcement learn-
ing—based TCP congestion control algorithm that adjusts the
congestion window using a dual-mode adaptive throughput

Link Utilization Comparison by Bandwidth

99.9% 99.8% 99.6% 99.4% % 1%
_— 98.4% 98.4%

o4.6% 95.6%
83.7%
80.0%

80
60
40
20

DQN-based TCP

g === ACKurate-DQN

5 Mbps 25 Mbps 50 Mbps 75 Mbps 100 Mbps
Bandwidth (Mbps)

Link Utilization (%)

(a) Link utilization across static bandwidth settings (5-100 Mbps).
ACKurate-DQN consistently achieves higher utilization, espe-
cially at 50 and 75 Mbps.

RTT Comparison by Bandwidth
249.50 ms
DQN-based TCP
240+ —=— ACKurate-DQN

222.60 ths

151.60 ms

1201 127.60 ms

100 &

5; 25 50 75
Bandwidth (Mbps)

(b) RTT across static bandwidth settings. ACKurate-DQN shows
lower RTT at 5 Mbps and remains competitive at higher band-
widths.

Fig. 4: Performance comparison between DQN-based TCP and
ACKurate-DQN under static bandwidth configurations.

ceiling (Th,ax). ACKurate-DQN delivers robust, adaptive per-
formance under diverse network conditions without relying
on explicit BDP or RTT estimates. By leveraging lightweight
throughput normalization and event-driven feedback, it re-
mains responsive across varying link conditions.

In conclusion, ACKurate-DQN demonstrates robust adap-
tation to sudden bandwidth changes, generalizes well across
static and dynamic environments, and maintains high through-
put with low latency. These results highlight its potential
as a scalable and practical learning-based congestion control
approach that operates effectively without per-topology tuning.
While effective in single-flow settings, ACKurate-DQN has
not yet been evaluated in multi-flow scenarios or under cross-
traffic. Future work includes extending the framework to
heterogeneous traffic types and deploying it in real-world
platforms using eBPF or kernel modules. ACKurate-DQN
represents a practical step toward scalable, learning-driven
congestion control that generalizes across networks without
environment-specific tuning.

1324

ACKNOWLEDGMENT

This work was partly supported by the Institute of Informa-
tion & Communications Technology Planning & Evaluation
IITP) - ITRC (Information Technology Research Center)
grant funded by the Korea government (MSIT) (IITP-2025-
RS-2024-00437886, 50%) and by Basic Science Research
Program through the National Research Foundation of Korea
(NRF) grant funded by the Ministry of Education (RS-2025-
25408839, 50%).

REFERENCES

[1] SJ. Seo and Y.Z. Cho, “Fairness Enhancement of TCP Congestion
Control Using Reinforcement Learning,” in Proc. ICAIIC, 2022, pp.
288-291. doi: 10.1109/ICAIIC54071.2022.9722626.

[2] SJ. Seo and Y.Z. Cho, “Inter-Protocol Fairness Evaluation of DQN-
based Congestion Control Algorithms,” in Proc. ICAIIC, 2023, pp.
693-696. doi: 10.1109/ICAIIC57133.2023.10067107.

[3] M. Allman, V. Paxson, and W. R. Stevens, “TCP Congestion Con-
trol,” RFC 5681, RFC Editor, 2009. [Online]. Available: https:/www.
rfc-editor.org/info/rfc5681

[4] S. Floyd and T. Henderson, “The NewReno Modification to TCP’s Fast
Recovery Algorithm,” RFC 6582, RFC Editor, 2012. [Online]. Available:
https://www.rfc-editor.org/info/rfc6582

[5] 1. Rhee, L. Xu, S. Ha, and A. Zimmermann, “CUBIC for Fast Long-
Distance Networks,” RFC 9438, RFC Editor, 2023. [Online]. Available:
https://www.rfc-editor.org/info/rfc9438

[6] N. Jay, N. H. Rotman, P. B. Godfrey, M. Schapira, and A. Tamar,
“A Deep Reinforcement Learning Perspective on Internet Congestion
Control,” in Proceedings of the 36th International Conference on Ma-
chine Learning (ICML), Long Beach, CA, USA, 2019, pp. 3050-3059.
[Online]. Available: https://proceedings.mlr.press/v97/jay19a.html

[7] K. Xiao, S. Mao, and J. K. Tugnait, “TCP-Drinc: Smart Congestion
Control Based on Deep Reinforcement Learning,” IEEE Access, vol. 7,
pp. 11892-11908, 2019. [Online]. Available: https://doi.org/10.1109/
ACCESS.2019.2892046

[8]1 Y. Li, J. Huang, C. Wu, X. Zhu, and J. Wang, “ORC: Online Rein-
forcement Learning for Congestion Control with Fast Convergence,” in
Proceedings of the ACM Asia-Pacific Workshop on Networking (APNet),
Hangzhou, China, 2025, pp. 1-7. [Online]. Available: https://dl.acm.org/
doi/10.1145/3735358.3735381

[91 V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D.
Wierstra, and M. Riedmiller, “Playing Atari with Deep Reinforcement
Learning,” arXiv preprint arXiv:1312.5602, 2013. [Online]. Available:
https://arxiv.org/abs/1312.5602

1325

