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Abstract—In this paper, we propose a novel loss function to
enhance the performance of a YOLOVS based object detection
model for traffic sign recognition under diverse road conditions.
The proposed method aims to improve detection accuracy in
challenging environments such as nighttime and adverse
weather. To optimize performance, we experimentally evaluate
three loss functions, i.e., Binary Cross Entropy, Focal Loss, and
Label Smoothing Cross Entropy under identical training
conditions. The results show that Focal Loss effectively
improves Recall by focusing on hard samples and minority
classes, while Label Smoothing reduces overfitting and
improves Precision. By combing the strengths of both, the
proposed loss function achieves robust overall performance with
optimal hyperparameters. Visual inspection using the test
dataset further confirms that the model reliably detects and
classifies traffic signs across a variety of environmental
conditions.
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I. INTRODUCTION

Traffic signs play a crucial role in ensuring road safety by
providing drivers with essential information such as speed
limits, pedestrian crossings, and warning zones. With the
advancement of autonomous driving technologies and
Advanced Driver Assistance Systems (ADAS), the demand
for Traffic Sign Recognition (TSR) systems that offer both
accuracy and real-time performance has been steadily
increasing [1].

Early Traffic Sign Recognition approaches primarily relied on
traditional image processing techniques and handcrafted
feature extraction. However, these methods showed
limitations in real-world environments due to their
vulnerability to changes in lighting, partial occlusions of signs,
and complex backgrounds [2]. To address these issues, recent
research [3] has actively explored object detection
technologies based on deep learning, particularly
Convolutional Neural Networks (CNN).

Among the many object detection frameworks [4, 5], You
Only Look Once (YOLO) has emerged as a leading algorithm
in real-time applications. YOLO performs detection in a
single forward pass of the network, allowing it to balance both
speed and accuracy effectively [6].
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In this study, we examine the architectural characteristics and
practical applicability of YOLO based models YOLOVS,
YOLOvV7, YOLOv6, and YOLOvVS. Based on this analysis, we
select YOLOvV8 as the most suitable model in terms of
accuracy and ease of use, and subsequently design and
implement a traffic sign recognition system using it.
Furthermore, considering real-world driving environments,
we perform image augmentation using Albumentations, a
Python based open source library, to simulate nighttime and
adverse weather conditions, which contributes to enhancing
the model’s generalization capability [7].

To further enhance the performance of the model, we conduct
experiments using various loss functions, including Binary
Cross Entropy [8], Focal Loss [9], and Label Smoothing Cross
Entropy Loss [10], and analyze how each loss function affects
key performance metrics such as precision and recall. The
experimental results show that while each loss function
demonstrates strengths in specific metrics, it is difficult to
achieve optimal performance across all metrics
simultaneously.

Therefore, we propose a novel approach that combines the
high precision of Label Smoothing with the high recall of
Focal Loss to improve the overall performance of the traffic
sign recognition model.

Through this series of experiments, we validate the
effectiveness of the YOLOvVS based traffic sign recognition
model and demonstrate its potential for building a robust
object detection system capable of maintaining high
recognition performance under diverse road conditions.

The rest of this paper is organized as follows: We begin with
the research methods in Section II. Experiment results are
presented in Section III followed by the conclusion in Section
Iv.

II. RESEARCH METHODS

In this section, we explain the research methodology for
developing a robust traffic sign recognition model, including
i) the class imbalance present in the dataset, ii) image
augmentation techniques simulating real-world road
conditions, which are applied exclusively to the training data
to improve generalization performance, iii) comparisons of
various YOLO based models with YOLOVS selected as the
final model due to its structural efficiency and training
stability, and iv) Binary Cross Entropy, Focal Loss, and Label
Smoothing Cross Entropy, which are the loss functions to
enhance the performance of traffic sign recognition.
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2.1 DATASET

In this study, we utilize a publicly available traffic sign
dataset from Kaggle [11]. The dataset consists of 877 original
images and includes four classes: Traffic Light, Stop, Speed
Limit, and Crosswalk. The number of objects per class is
distributed (see Fig.1) as follows: Speed Limit (783), Traffic
Light (170), Crosswalk (200), and Stop (91). Note that class
distribution shows a significant imbalance, with the Speed
Limit class accounting for a disproportionately large portion
of the dataset. Such class imbalance may increase the risk of
overfitting to certain classes during training, highlighting the
need for appropriate strategies to mitigate this issue.
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Fig. 1. Visualization of Class Imbalance in Dataset.

Each image is accompanied by an annotation file in XML
format, which provides precise object localization information
for object detection tasks. To prepare the data for training with
the YOLOvV8 model, we convert the annotation files from
XML to the TXT format required by YOLO. We then
randomly shuffle the entire dataset and split it into three
subsets training (80%), validation (10%), and testing (10%).

The training dataset consists of a total of 1,406 images,
including both original and augmented images. For the
validation and test datasets, we use only original images to
ensure a fair evaluation of the model’s generalization
performance. This approach aims to train a model capable of
responding robustly to various real-world road conditions.

2.2 IMAGE AUGMENTATION

To enhance traffic sign recognition performance under
diverse environmental conditions, we apply image
augmentation exclusively to the training dataset. These
augmentation techniques increase the variability of the
training data, thereby improving the model’s generalization
capability and mitigating overfitting.

Using the Albumentations library, we employ various
augmentation methods, including random brightness and
contrast adjustment (RandomBrightnessContrast), motion
blur (MotionBlur) to simulate blurring effects, fog
(RandomFog), rain (RandomRain), and grayscale conversion
(ToGray) to mimic nighttime conditions [7]. These
augmentations simulate a range of real-world driving
scenarios such as daytime, nighttime, rainy, and foggy
weather conditions.

Fig. 2 presents examples of original images from the training
dataset alongside their corresponding augmented versions.
For validation and testing, we use only original images
without augmentation to evaluate the actual performance of
the model. This set up enables a comparative analysis of the

the model’s

impact of augmented training data on
generalization ability.
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Fig. 2. Examples of original images with (a), (c) and respective augmented
images with (b), (d).

2.3 MODEL SELECTION

The primary goal of this study is to enhance recognition
accuracy and generalization capability in diverse road
environments by combining an anchor-free object detection
architecture with an optimized loss function. To achieve this,
we review and compare four YOLO based models YOLOVS,
YOLOv7, YOLOvV6, and YOLOVS in terms of architectural
characteristics, experimental feasibility, and training stability.

YOLOVS is one of the most widely used object detection
models, known for its fast inference speed and stable accuracy.
However, it retains the conventional anchor-based structure,
which limits its ability to flexibly detect objects of varying
sizes. In real-world traffic scenarios involving irregular
lighting and complex backgrounds, the model’s sensitivity to
anchor box configurations can hinder its performance,
particularly for small traffic signs. Therefore, we exclude
YOLOVS from selection.

YOLOV7 integrates several high performance modules and
achieves impressive accuracy. Nonetheless, its complex
architecture and high computational cost make it unsuitable
for our experimental environment. Given the relatively small
dataset used in this study, there is also a risk of overfitting,
which further reduces its applicability.

YOLOV6 partially adopts anchor-free characteristics and is
initially considered a viable candidate. However, during
experimentation, it frequently encounters training instabilities
and errors. Despite various hyperparameter adjustments, the
model fails to demonstrate consistent performance and
reliable convergence, which restricts its use in this study.

YOLOVS, on the other hand, adopts a fully anchor-free
architecture that directly predicts object centers, resulting in
more compact and accurate detections. This structure enables
the model to better adapt to objects of various sizes and
positions. Additionally, YOLOVS offers high usability and
integrates seamlessly into our experimental environment. It
also demonstrates stable convergence and strong detection
performance during training. For these reasons, we select
YOLOVS as the most suitable model for our objectives and
use it as the foundation for developing the proposed traffic
sign recognition system.

2.4 Loss FUNCTIONS

To improve the performance of the traffic sign recognition
model, we explore and apply various loss functions. In real-
world traffic scenarios, class imbalance frequently occurs, and
certain samples may be difficult to predict due to varying
lighting or weather conditions. To address these challenges
and enhance the generalization performance of the model, we
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experiment with three primary loss functions: Binary Cross
Entropy (BCE) [8], Focal Loss [9], and Label Smoothing
Cross Entropy Loss [10].

A. Binary Cross Entropy

Binary Cross Entropy is one of the most widely used loss
functions for binary classification tasks and serves as the
default loss function in YOLOVS. It computes the loss based
on the logarithmic difference between the predicted
probability and the ground truth label. The loss decreases as
the predicted probability approaches the true label. The BCE
loss is defined as follows [8]:

Lpcg = —[y-log(®) + (1 —y)-log(1 -], (1

where y € {0,1} and $ € {0,1} denote the ground truth label
and the predicted probability after applying the sigmoid
function, respectively. While BCE encourages the model to
make confident predictions, it may not perform well in cases
involving class imbalance or hard to classify samples as it
lacks mechanisms to address sample difficult or frequency.

B. Focal Loss

Focal Loss is designed to address class imbalance and the
dominance of easily classified samples by assigning greater
weight to hard to classify examples. It is particularly effective
when certain classes are significantly underrepresented,
which can lead to their being overlooked during training. The
Focal Loss is defined as follows [9]:

Lrocar = —a (1 —p) log(py), 2

where a,, p;, and y denote a class-specific weighting factor,
the predicted probability for the true class, and the focusing
parameter, respectively. By reducing the loss contribution
from easy examples, Focal Loss encourages the model to
focus on more challenging samples. This is particularly
beneficial under difficult conditions such as nighttime or
adverse weather, where traffic signs may be harder to detect.

C. Label Smoothing Cross Entropy Loss

Label Smoothing is a regularization technique that prevents
the model from becoming overconfident in its predictions,
thereby improving generalization performance. Instead of
assigning a probability of 1 to the correct class and 0 to all
others (as in traditional one-hot encoding), label smoothing
softens the target distribution as follows:

Ve=m(l—a)+=, ©)

where 7, @ € {0,1}, and K denote the smoothed target
probability, the smoothing factor, and K is the number of
classes, respectively. The corresponding loss function is then
defined as [10]:

K
Lis == Flogwy). @

Here, J; and p; denote the smoothed ground truth distribution
and the predicted probability after applying the softmax
function, respectively. This approach encourages the model to
allocate some probability mass to non-target classes, which
reduces overfitting and enhances generalization, especially in
noisy or imbalanced datasets.

III. EXPERIMENTS

3.1 EXPERIMENTAL SETUP

In this study, we train a traffic sign recognition model
based on the pretrained YOLOvV8s model. The training is
conducted in a GPU environment using the Ultralytics
YOLOVS library built on the PyTorch framework. The main
training configurations are as follows: 50 epochs, a batch size
of 8, an input image size of 416x416, and an early stopping
patience of 30.

To compare model performance, we apply three different loss
functions Binary Cross Entropy, Focal Loss, and Label
Smoothing Cross Entropy under identical training conditions.
This setup enables a quantitative analysis of the impact of each
loss function on model performance.

To ensure balanced recognition performance across diverse
conditions and enhance generalization under real-world
environments, we use both original and augmented images in
the training dataset. For validation and testing, we use only
original images without augmentation to ensure a fair
evaluation of the model’s generalization capability.

Model performance is evaluated using widely adopted object
detection metrics: Precision, Recall, mAP@50, and
mAP@50-95.

3.2 COMPARISON OF LOSS FUNCTIONS

To evaluate the impact of different loss functions on the
performance of the traffic sign recognition model, we conduct
a comparative experiment using three loss functions: Binary
Cross Entropy (BCE), Focal Loss, and Label Smoothing Cross
Entropy under identical training conditions. Table I
summarizes the results of this experiment.

TABLE 1. PERFORMANCE COMPARISON BY LOSS FUNCTION
Loss Function Precision Recall mAP@50 r9njAP@50-
Binary Cross | g74 0.854 0.883 0.778
Entropy
Focal Loss
(@025, y—2) | 0864 0.870 0.852 0.744
Label
Smoothing 0.916 0.785 0.839 0.729
(¥:=0.1)

Binary Cross Entropy demonstrates overall balanced

performance, with moderate Precision (0.874) and Recall
(0.854), serving as a stable baseline across all metrics. Focal
Loss achieves the highest Recall (0.870), indicating superior
detection performance for hard to learn samples or
underrepresented classes, which is particularly effective in
complex road scenarios such as nighttime or adverse weather
conditions. However, this comes with a slight decrease in
Precision (0.864) compared to Binary Cross Entropy. Label
Smoothing, on the other hand, achieves the highest Precision
(0.916), effectively reducing overfitting by mitigating
overconfidence and enhancing generalization. This, however,
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results in a notably lower Recall (0.785), suggesting some
weak signals might be missed.

No single loss function outperforms the others across all
evaluation metrics. While Label Smoothing produces the
highest Precision, its lower Recall compared to Focal Loss and
Binary Cross Entropy highlights a tradeoff between Precision
and Recall. Conversely, Focal Loss’s highest Recall but
relatively lower Precision implies an increase in false
positives.

Based on these findings, we propose a method that combines
the high Precision of Label Smoothing with the high Recall of
Focal Loss. In the next experiment, we design a loss function
to incorporate the strengths of both approaches and
empirically validate its performance.

3.3 COMBINED LOSS: LABEL SMOOTHING + FOCAL LOSS

In the experiments in Section 3.2, Label Smoothing Cross
Entropy and Focal Loss each demonstrate strengths in terms
of Precision and Recall, respectively. Unfortunately, any loss
function dose not achieve superior performance across all
evaluation metrics simultaneously. Therefore, we propose a
novel loss function that combines the advantages of both
Label Smoothing and Focal Loss.

The proposed loss function integrates Label Smoothing Cross
Entropy into the Focal Loss framework, aiming to emphasize
difficult samples while mitigating overconfidence and
improving the model’s generalization capability. Given the
class imbalance present in the dataset, which often leads to
reduced prediction accuracy for minority classes we combine
the strengths of both approaches. The combined loss is defined
as follows:

K
Leombinea = — Z F:(1 — p)¥log(py), 5)
i=1

where ¥;, p;, and y denote the smoothed label, the predicted
probability after applying the softmax function, and the
focusing parameter inherited from Focal Loss, respectively.

To identify the optimal combination of the two core
hyperparameters the smoothing factor 3; and the focusing
parameter y we conduct a series of experiments. The results
are summarized in TABLE II.

The combination of ¥; = 0.04 and y = 2.0 yields high
Recall and mAP@50, but relatively low Precision. In contrast,
the combination of #; = 0.05 and y = 2.0 achieves slightly
better performance in Precision and mAP@50-95, offering a
more balanced overall performance. Therefore, we select this
configuration as the baseline for subsequent experiments.

Based on this baseline setting, we perform further fine-tuning
of the smoothing factor ;. The results are presented in
TABLE IIL

TABLE III. FINE-TUNING AROUND BEST SMOOTHING VALUE
Smoothing gamma Precision Recall mAP@S50 mAPg(;Qﬂ)—
0.047 2.0 0.94 0.874 0.901 0.769
0.05 2.0 0.966 0.885 0.92 0.789
0.053 2.0 0.949 0.895 0.913 0.777
0.055 2.0 0.927 0.883 0.92 0.782

This fine-tuning experiment confirms that the configuration
with #; = 0.05 and y = 2.0 achieves the best overall results
in terms of Precision, mAP@50, and mAP@50-95, while also
maintaining a high Recall score. Thus, we validate this setting
as the most suitable in terms of balanced performance.

Following the loss function optimization, we perform
additional post processing to further enhance detection
performance. Specifically, we adjust the confidence threshold
and Intersection over Union (IoU) threshold. The results are
summarized in TABLE IV.

TABLE 1V. CONFIDENCE AND 10U THRESHOLDS TUNING
Smoothing | gamma | Precision| Recall |mAP@50 mA_P;?ﬂ) Conf IoU
0.05 2.0 0.966 0.885 0.92 0.789
0.05 2.0 0.966 0.885 0.921 0.79 0.6
0.05 2.0 0.969 | 0.885 | 0.939 0.822 0.25

TABLE II. PERFORMANCE BY SMOOTHING AND GAMMA
PARAMETERS
Smoothing | gamma | Precision | Recall | mar@so | 4@
0.05 1.8 0.880 0.852 0.845 0.724
0.03 2.0 0.942 0.871 0.939 0.775
0.04 2.0 0.929 0.896 0.927 0.78
0.05 2.0 0.966 0.885 0.92 0.789
0.06 2.0 0.898 0.886 0.877 0.759
0.1 2.0 0.920 0.874 0.887 0.769
0.1 2.1 0.944 0.894 0914 0.773
0.07 2.1 0.882 0.841 0.832 0.756

Note: In this table, blank entries under the ‘Conf” and ‘IoU’ columns indicate
that the corresponding thresholds are not applied at all.

The final configuration using ¥; = 0.05, y = 2.0, and
confidence threshold of 0.25 achieves the highest performance
across all evaluation metrics: Precision (0.969), Recall (0.885),
mAP@50 (0.939), and mAP@50-95 (0.822). These results
indicate that the model is effectively optimized to filter out
uncertain predictions while maintaining sensitivity to critical
objects.

3.4 VIZUALIZATION OF DETECTION RESULTS

In addition to quantitative metrics, we visually assess the
detection performance of the model using the test dataset. Fig.
3 presents examples in which the model successfully
recognizes and classifies traffic signs from randomly selected
test images.

Despite various challenging conditions such as lighting
changes, background complexity, and object size variations,
the model accurately recognizes signs including Speed Limit,
Traffic Light, Crosswalk, and Stop.

These results visually confirm that the proposed loss function
and optimization strategies are effective, even under real-
world road conditions.
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Fig. 3. Visualization of Traffic Sign Recognition.

IV. CONCLUSION

In this paper, we propose a YOLOVS based traffic sign
detection system designed to robustly recognize traffic signs
under diverse road conditions. Through a comparative
analysis of the architectural characteristics and training
stability of YOLO based models, we select YOLOvV8 an
anchor-free architecture as the final model as it best aligns
with the objectives of this study.

We experimentally apply various loss functions, including
Binary Cross Entropy, Focal Loss, and Label Smoothing
Cross Entropy, to address challenges such as illumination
changes, adverse weather conditions, and class imbalance
frequently encountered in real-world environments. While
each loss function demonstrates strengths in specific metrics
such as Precision or Recall, none achieves consistently
balanced performance across all evaluation indicators.

To overcome this limitation, we design a novel combined loss
function that integrates the overfitting mitigation effect of
Label Smoothing with the focus on hard samples emphasized
by Focal Loss, making it particularly robust against class
imbalance. Experimental results show that with a smoothing
factor of J; = 0.05 and focusing parameter y = 2.0, the
model achieves the best overall performance: Precision of
0.969, Recall of 0.885, mAP@50 of 0.939, and mAP@50-95
of 0.822. Additionally, adjusting the confidence threshold to
0.25 further improves the accuracy of post processing.

Visualization of detection results using randomly selected
images from the test dataset confirms that the model
accurately recognizes and classifies traffic signs under various
conditions including daytime, nighttime, rain, and fog. These
findings verify that the proposed combined loss function
enables effective and robust detection in real-world scenarios.

This study presents a loss function combination strategy to
enhance the performance of YOLOvV8 based traffic sign
detection and demonstrates that high recognition accuracy can
be achieved even under class imbalance and complex
environmental conditions.
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For future work, we plan to improve model robustness through
additional training and evaluation on large-scale real-world
road datasets and to explore the application of real-time,
lightweight detection models for deployment in autonomous
driving systems and smart city infrastructure.
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