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Abstract—In this paper, we propose a novel loss function to 
enhance the performance of a YOLOv8 based object detection 
model for traffic sign recognition under diverse road conditions. 
The proposed method aims to improve detection accuracy in 
challenging environments such as nighttime and adverse 
weather. To optimize performance, we experimentally evaluate 
three loss functions, i.e., Binary Cross Entropy, Focal Loss, and 
Label Smoothing Cross Entropy under identical training 
conditions. The results show that Focal Loss effectively 
improves Recall by focusing on hard samples and minority 
classes, while Label Smoothing reduces overfitting and 
improves Precision. By combing the strengths of both, the 
proposed loss function achieves robust overall performance with 
optimal hyperparameters. Visual inspection using the test 
dataset further confirms that the model reliably detects and 
classifies traffic signs across a variety of environmental 
conditions. 

Keywords—YOLOv8, Traffic Sign Recognition, Object 
Detection, Focal Loss, Label Smoothing Cross Entropy, Combined 
Loss Function, Autonomous Driving 

 

I. INTRODUCTION 
Traffic signs play a crucial role in ensuring road safety by 

providing drivers with essential information such as speed 
limits, pedestrian crossings, and warning zones. With the 
advancement of autonomous driving technologies and 
Advanced Driver Assistance Systems (ADAS), the demand 
for Traffic Sign Recognition (TSR) systems that offer both 
accuracy and real-time performance has been steadily 
increasing [1]. 

Early Traffic Sign Recognition approaches primarily relied on 
traditional image processing techniques and handcrafted 
feature extraction. However, these methods showed 
limitations in real-world environments due to their 
vulnerability to changes in lighting, partial occlusions of signs, 
and complex backgrounds [2]. To address these issues, recent 
research [3] has actively explored object detection 
technologies based on deep learning, particularly 
Convolutional Neural Networks (CNN). 

Among the many object detection frameworks [4, 5], You 
Only Look Once (YOLO) has emerged as a leading algorithm 
in real-time applications. YOLO performs detection in a 
single forward pass of the network, allowing it to balance both 
speed and accuracy effectively [6]. 

In this study, we examine the architectural characteristics and 
practical applicability of YOLO based models YOLOv5, 
YOLOv7, YOLOv6, and YOLOv8. Based on this analysis, we 
select YOLOv8 as the most suitable model in terms of 
accuracy and ease of use, and subsequently design and 
implement a traffic sign recognition system using it. 
Furthermore, considering real-world driving environments, 
we perform image augmentation using Albumentations, a 
Python based open source library, to simulate nighttime and 
adverse weather conditions, which contributes to enhancing 
the model’s generalization capability [7]. 

To further enhance the performance of the model, we conduct 
experiments using various loss functions, including Binary 
Cross Entropy [8], Focal Loss [9], and Label Smoothing Cross 
Entropy Loss [10], and analyze how each loss function affects 
key performance metrics such as precision and recall. The 
experimental results show that while each loss function 
demonstrates strengths in specific metrics, it is difficult to 
achieve optimal performance across all metrics 
simultaneously. 

Therefore, we propose a novel approach that combines the 
high precision of Label Smoothing with the high recall of 
Focal Loss to improve the overall performance of the traffic 
sign recognition model. 

Through this series of experiments, we validate the 
effectiveness of the YOLOv8 based traffic sign recognition 
model and demonstrate its potential for building a robust 
object detection system capable of maintaining high 
recognition performance under diverse road conditions. 

The rest of this paper is organized as follows: We begin with 
the research methods in Section II. Experiment results are 
presented in Section III followed by the conclusion in Section 
IV. 

II. RESEARCH METHODS 
In this section, we explain the research methodology for 

developing a robust traffic sign recognition model, including 
i) the class imbalance present in the dataset, ii) image 
augmentation techniques simulating real-world road 
conditions, which are applied exclusively to the training data 
to improve generalization performance, iii) comparisons of 
various YOLO based models with YOLOv8 selected as the 
final model due to its structural efficiency and training 
stability, and iv) Binary Cross Entropy, Focal Loss, and Label 
Smoothing Cross Entropy, which are the loss functions to 
enhance the performance of traffic sign recognition. 

1317979-8-3315-5678-5/25/$31.00 ©2025 IEEE ICTC 2025



 2.1 DATASET 
In this study, we utilize a publicly available traffic sign 

dataset from Kaggle [11]. The dataset consists of  877 original 
images and includes four classes: Traffic Light, Stop, Speed 
Limit, and Crosswalk. The number of objects per class is 
distributed (see Fig.1) as follows: Speed Limit (783), Traffic 
Light (170), Crosswalk (200), and Stop (91). Note that class 
distribution shows a significant imbalance, with the Speed 
Limit class accounting for a disproportionately large portion 
of the dataset. Such class imbalance may increase the risk of 
overfitting to certain classes during training, highlighting the 
need for appropriate strategies to mitigate this issue. 

 
Fig. 1. Visualization of Class Imbalance in Dataset. 

Each image is accompanied by an annotation file in XML 
format, which provides precise object localization information 
for object detection tasks. To prepare the data for training with 
the YOLOv8 model, we convert the annotation files from 
XML to the TXT format required by YOLO. We then 
randomly shuffle the entire dataset and split it into three 
subsets training (80%), validation (10%), and testing (10%). 

The training dataset consists of a total of 1,406 images, 
including both original and augmented images. For the 
validation and test datasets, we use only original images to 
ensure a fair evaluation of the model’s generalization 
performance. This approach aims to train a model capable of 
responding robustly to various real-world road conditions. 

 2.2 IMAGE AUGMENTATION 
To enhance traffic sign recognition performance under 

diverse environmental conditions, we apply image 
augmentation exclusively to the training dataset. These 
augmentation techniques increase the variability of the 
training data, thereby improving the model’s generalization 
capability and mitigating overfitting. 

Using the Albumentations library, we employ various 
augmentation methods, including random brightness and 
contrast adjustment (RandomBrightnessContrast), motion 
blur (MotionBlur) to simulate blurring effects, fog 
(RandomFog), rain (RandomRain), and grayscale conversion 
(ToGray) to mimic nighttime conditions [7]. These 
augmentations simulate a range of real-world driving 
scenarios such as daytime, nighttime, rainy, and foggy 
weather conditions. 

Fig. 2 presents examples of original images from the training 
dataset alongside their corresponding augmented versions. 
For validation and testing, we use only original images 
without augmentation to evaluate the actual performance of 
the model. This set up enables a comparative analysis of the 

impact of augmented training data on the model’s 
generalization ability. 

    

(a) (b) (c) (d) 
 

Fig. 2. Examples of original images with (a), (c) and respective augmented  
images with (b), (d). 

 2.3 MODEL SELECTION 
The primary goal of this study is to enhance recognition 

accuracy and generalization capability in diverse road 
environments by combining an anchor-free object detection 
architecture with an optimized loss function. To achieve this, 
we review and compare four YOLO based models YOLOv5, 
YOLOv7, YOLOv6, and YOLOv8 in terms of architectural 
characteristics, experimental feasibility, and training stability. 

YOLOv5 is one of the most widely used object detection 
models, known for its fast inference speed and stable accuracy. 
However, it retains the conventional anchor-based structure, 
which limits its ability to flexibly detect objects of varying 
sizes. In real-world traffic scenarios involving irregular 
lighting and complex backgrounds, the model’s sensitivity to 
anchor box configurations can hinder its performance, 
particularly for small traffic signs. Therefore, we exclude 
YOLOv5 from selection. 

YOLOv7 integrates several high performance modules and 
achieves impressive accuracy. Nonetheless, its complex 
architecture and high computational cost make it unsuitable 
for our experimental environment. Given the relatively small 
dataset used in this study, there is also a risk of overfitting, 
which further reduces its applicability. 

YOLOv6 partially adopts anchor-free characteristics and is 
initially considered a viable candidate. However, during 
experimentation, it frequently encounters training instabilities 
and errors. Despite various hyperparameter adjustments, the 
model fails to demonstrate consistent performance and 
reliable convergence, which restricts its use in this study. 

YOLOv8, on the other hand, adopts a fully anchor-free 
architecture that directly predicts object centers, resulting in 
more compact and accurate detections. This structure enables 
the model to better adapt to objects of various sizes and 
positions. Additionally, YOLOv8 offers high usability and 
integrates seamlessly into our experimental environment. It 
also demonstrates stable convergence and strong detection 
performance during training. For these reasons, we select 
YOLOv8  as the most suitable model for our objectives and 
use it as the foundation for developing the proposed traffic 
sign recognition system. 

 2.4 LOSS FUNCTIONS 
To improve the performance of the traffic sign recognition 

model, we explore and apply various loss functions. In real-
world traffic scenarios, class imbalance frequently occurs, and 
certain samples may be difficult to predict due to varying 
lighting or weather conditions. To address these challenges 
and enhance the generalization performance of the model, we 
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experiment with three primary loss functions: Binary Cross 
Entropy (BCE) [8], Focal Loss [9], and Label Smoothing 
Cross Entropy Loss [10]. 

A. Binary Cross Entropy 
Binary Cross Entropy is one of the most widely used loss 
functions for binary classification tasks and serves as the 
default loss function in YOLOv8. It computes the loss based 
on the logarithmic difference between the predicted 
probability and the ground truth label. The loss decreases as 
the predicted probability approaches the true label. The BCE 
loss is defined as follows [8]: 
 

ℒ!"# = −[𝑦𝑦 ∙ log(𝑦𝑦+) + (1 − 𝑦𝑦) ∙ 𝑙𝑙𝑙𝑙𝑙𝑙(1 − 𝑦𝑦+)], (1) 

 

where 𝑦𝑦 ∈ {0,1} and 𝑦𝑦+ ∈ {0,1} denote the ground truth label 
and the predicted probability after applying the sigmoid 
function, respectively. While BCE encourages the model to 
make confident predictions, it may not perform well in cases 
involving class imbalance or hard to classify samples as it 
lacks mechanisms to address sample difficult or frequency. 

B. Focal Loss 
Focal Loss is designed to address class imbalance and the 
dominance of easily classified samples by assigning greater 
weight to hard to classify examples. It is particularly effective 
when certain classes are significantly underrepresented, 
which can lead to their being overlooked during training. The 
Focal Loss is defined as follows [9]: 
 

ℒ$%&'( = −𝛼𝛼)(1 − 𝑝𝑝))*𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝)),  (2) 

 

where 𝛼𝛼), 𝑝𝑝), and 𝛾𝛾 denote a class-specific weighting factor, 
the predicted probability for the true class, and the focusing 
parameter, respectively. By reducing the loss contribution 
from easy examples, Focal Loss encourages the model to 
focus on more challenging samples. This is particularly 
beneficial under difficult conditions such as nighttime or 
adverse weather, where traffic signs may be harder to detect. 

C. Label Smoothing Cross Entropy Loss 
Label Smoothing is a regularization technique that prevents 
the model from becoming overconfident in its predictions, 
thereby improving generalization performance. Instead of 
assigning a probability of 1 to the correct class and 0 to all 
others (as in traditional one-hot encoding), label smoothing 
softens the target distribution as follows: 

 

𝑦𝑦;+ = 𝑦𝑦+(1 − 𝛼𝛼) + ,
-
	,  (3) 

 

where 𝑦𝑦;+ , 𝛼𝛼 ∈ {0,1} , and 𝐾𝐾   denote the smoothed target 
probability, the smoothing factor, and 𝐾𝐾  is the number of 
classes, respectively. The corresponding loss function is then 
defined as [10]: 

ℒ./ = −>𝑦𝑦;0log(𝑝𝑝0)
-

012

.																								(4) 

 

Here, 𝑦𝑦;0 and 𝑝𝑝0  denote the smoothed ground truth distribution 
and the predicted probability after applying the softmax 
function, respectively. This approach encourages the model to 
allocate some probability mass to non-target classes, which 
reduces overfitting and enhances generalization, especially in 
noisy or imbalanced datasets. 

III. EXPERIMENTS 

 3.1 EXPERIMENTAL SETUP 

In this study, we train a traffic sign recognition model 
based on the pretrained YOLOv8s model. The training is 
conducted in a GPU environment using the Ultralytics 
YOLOv8 library built on the PyTorch framework. The main 
training configurations are as follows: 50 epochs, a batch size 
of 8, an input image size of 416×416, and an early stopping 
patience of 30. 

To compare model performance, we apply three different loss 
functions Binary Cross Entropy, Focal Loss, and Label 
Smoothing Cross Entropy under identical training conditions. 
This setup enables a quantitative analysis of the impact of each 
loss function on model performance. 

To ensure balanced recognition performance across diverse 
conditions and enhance generalization under real-world 
environments, we use both original and augmented images in 
the training dataset. For validation and testing, we use only 
original images without augmentation to ensure a fair 
evaluation of the model’s generalization capability. 

Model performance is evaluated using widely adopted object 
detection metrics: Precision, Recall, mAP@50, and 
mAP@50-95. 

 3.2 COMPARISON OF LOSS FUNCTIONS 

To evaluate the impact of different loss functions on the 
performance of the traffic sign recognition model, we conduct 
a comparative experiment using three loss functions: Binary 
Cross Entropy (BCE), Focal Loss, and Label Smoothing Cross 
Entropy under identical training conditions. Table I 
summarizes the results of this experiment. 

TABLE I.  PERFORMANCE COMPARISON BY LOSS FUNCTION 

Loss Function Precision Recall mAP@50 mAP@50-
95 

Binary Cross 
Entropy 0.874 0.854 0.883 0.778 

Focal Loss 
(𝜶𝜶=0.25, 𝜸𝜸=2) 0.864 0.870 0.852 0.744 

Label 
Smoothing 
(𝒚𝒚$𝒊𝒊=0.1) 

0.916 0.785 0.839 0.729 

 

Binary Cross Entropy demonstrates overall balanced 
performance, with moderate Precision (0.874) and Recall 
(0.854), serving as a stable baseline across all metrics. Focal 
Loss achieves the highest Recall (0.870), indicating superior 
detection performance for hard to learn samples or 
underrepresented classes, which is particularly effective in 
complex road scenarios such as nighttime or adverse weather 
conditions. However, this comes with a slight decrease in 
Precision (0.864) compared to Binary Cross Entropy. Label 
Smoothing, on the other hand, achieves the highest Precision 
(0.916), effectively reducing overfitting by mitigating 
overconfidence and enhancing generalization. This, however, 
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results in a notably lower Recall (0.785), suggesting some 
weak signals might be missed. 

No single loss function outperforms the others across all 
evaluation metrics. While Label Smoothing produces the 
highest Precision, its lower Recall compared to Focal Loss and 
Binary Cross Entropy highlights a tradeoff between Precision 
and Recall. Conversely, Focal Loss’s highest Recall but 
relatively lower Precision implies an increase in false 
positives. 

Based on these findings, we propose a method that combines 
the high Precision of Label Smoothing with the high Recall of 
Focal Loss. In the next experiment, we design a loss function 
to incorporate the strengths of both approaches and 
empirically validate its performance. 

 3.3 COMBINED LOSS: LABEL SMOOTHING + FOCAL LOSS 
In the experiments in Section 3.2, Label Smoothing Cross 

Entropy and Focal Loss each demonstrate strengths in terms 
of Precision and Recall, respectively. Unfortunately, any loss 
function dose not achieve superior performance across all 
evaluation metrics simultaneously. Therefore, we propose a 
novel loss function that combines the advantages of both 
Label Smoothing and Focal Loss. 

The proposed loss function integrates Label Smoothing Cross 
Entropy into the Focal Loss framework, aiming to emphasize 
difficult samples while mitigating overconfidence and 
improving the model’s generalization capability. Given the 
class imbalance present in the dataset, which often leads to 
reduced prediction accuracy for minority classes we combine 
the strengths of both approaches. The combined loss is defined 
as follows: 

 

𝐿𝐿&%340567 = 	−>𝑦𝑦;0(1 − 𝑝𝑝0)*log(𝑝𝑝0)
-

012

,												(5)	 

 

where 𝑦𝑦;0, 𝑝𝑝0, and 𝛾𝛾 denote the smoothed label, the predicted 
probability after applying the softmax function, and the 
focusing parameter inherited from Focal Loss, respectively. 

To identify the optimal combination of the two core 
hyperparameters the smoothing factor 𝑦𝑦;0  and the focusing 
parameter 𝛾𝛾 we conduct a series of experiments. The results 
are summarized in TABLE II. 

TABLE II.  PERFORMANCE BY SMOOTHING AND GAMMA 
PARAMETERS 

Smoothing gamma Precision Recall mAP@50 mAP@50-
95 

0.05 1.8 0.880 0.852 0.845 0.724 

0.03 2.0 0.942 0.871 0.939 0.775 

0.04 2.0 0.929 0.896 0.927 0.78 

0.05 2.0 0.966 0.885 0.92 0.789 

0.06 2.0 0.898 0.886 0.877 0.759 

0.1 2.0 0.920 0.874 0.887 0.769 

0.1 2.1 0.944 0.894 0.914 0.773 

0.07 2.1 0.882 0.841 0.832 0.756 

 

The combination of 𝑦𝑦;0 = 0.04	and		𝛾𝛾 = 2.0  yields high 
Recall and mAP@50, but relatively low Precision. In contrast, 
the combination of 𝑦𝑦;0 = 0.05	and		𝛾𝛾 = 2.0 achieves slightly 
better performance in Precision and mAP@50-95, offering a 
more balanced overall performance. Therefore, we select this 
configuration as the baseline for subsequent experiments. 

Based on this baseline setting, we perform further fine-tuning 
of the smoothing factor 𝑦𝑦;0 . The results are presented in 
TABLE III. 

TABLE III.  FINE-TUNING AROUND BEST SMOOTHING VALUE 

Smoothing gamma Precision Recall mAP@50 mAP@50-
95 

0.047 2.0 0.94 0.874 0.901 0.769 

0.05 2.0 0.966 0.885 0.92 0.789 

0.053 2.0 0.949 0.895 0.913 0.777 

0.055 2.0 0.927 0.883 0.92 0.782 

 

This fine-tuning experiment confirms that the configuration 
with 𝑦𝑦;0 = 0.05	and		𝛾𝛾 = 2.0 achieves the best overall results 
in terms of Precision, mAP@50, and mAP@50-95, while also 
maintaining a high Recall score. Thus, we validate this setting 
as the most suitable in terms of balanced performance. 

Following the loss function optimization, we perform 
additional post processing to further enhance detection 
performance. Specifically, we adjust the confidence threshold 
and Intersection over Union (IoU) threshold. The results are 
summarized in TABLE IV. 

TABLE IV.  CONFIDENCE AND IOU THRESHOLDS TUNING 

Smoothing gamma Precision Recall mAP@50 mAP@50
-95 Conf IoU 

0.05 2.0 0.966 0.885 0.92 0.789   
0.05 2.0 0.966 0.885 0.921 0.79  0.6 
0.05 2.0 0.969 0.885 0.939 0.822 0.25  

Note: In this table, blank entries under the ‘Conf’ and ‘IoU’ columns indicate 
that the corresponding thresholds are not applied at all. 

The final configuration using 𝑦𝑦;0 = 0.05, 𝛾𝛾 = 2.0 , and 
confidence threshold of 0.25 achieves the highest performance 
across all evaluation metrics: Precision (0.969), Recall (0.885), 
mAP@50 (0.939), and mAP@50-95 (0.822). These results 
indicate that the model is effectively optimized to filter out 
uncertain predictions while maintaining sensitivity to critical 
objects. 

 3.4 VIZUALIZATION OF DETECTION RESULTS 

 In addition to quantitative metrics, we visually assess the 
detection performance of the model using the test dataset. Fig. 
3 presents examples in which the model successfully 
recognizes and classifies traffic signs from randomly selected 
test images. 

Despite various challenging conditions such as lighting 
changes, background complexity, and object size variations, 
the model accurately recognizes signs including Speed Limit, 
Traffic Light, Crosswalk, and Stop. 

These results visually confirm that the proposed loss function 
and optimization strategies are effective, even under real-
world road conditions. 
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Fig. 3. Visualization of Traffic Sign Recognition. 

IV. CONCLUSION 
In this paper, we propose a YOLOv8 based traffic sign 

detection system designed to robustly recognize traffic signs 
under diverse road conditions. Through a comparative 
analysis of the architectural characteristics and training 
stability of YOLO based models, we select YOLOv8 an 
anchor-free architecture as the final model as it best aligns 
with the objectives of this study. 

We experimentally apply various loss functions, including 
Binary Cross Entropy, Focal Loss, and Label Smoothing 
Cross Entropy, to address challenges such as illumination 
changes, adverse weather conditions, and class imbalance 
frequently encountered in real-world environments. While 
each loss function demonstrates strengths in specific metrics 
such as Precision or Recall, none achieves consistently 
balanced performance across all evaluation indicators. 

To overcome this limitation, we design a novel combined loss 
function that integrates the overfitting mitigation effect of 
Label Smoothing with the focus on hard samples emphasized 
by Focal Loss, making it particularly robust against class 
imbalance. Experimental results show that with a smoothing 
factor of 𝑦𝑦;0 = 0.05	and	focusing	parameter		𝛾𝛾 = 2.0,  the 
model achieves the best overall performance: Precision of 
0.969, Recall of 0.885, mAP@50 of 0.939, and mAP@50-95 
of 0.822. Additionally, adjusting the confidence threshold to 
0.25 further improves the accuracy of post processing. 

Visualization of detection results using randomly selected 
images from the test dataset confirms that the model 
accurately recognizes and classifies traffic signs under various 
conditions including daytime, nighttime, rain, and fog. These 
findings verify that the proposed combined loss function 
enables effective and robust detection in real-world scenarios. 

This study presents a loss function combination strategy to 
enhance the performance of YOLOv8 based traffic sign 
detection and demonstrates that high recognition accuracy can 
be achieved even under class imbalance and complex 
environmental conditions. 

For future work, we plan to improve model robustness through 
additional training and evaluation on large-scale real-world 
road datasets and to explore the application of real-time, 
lightweight detection models for deployment in autonomous 
driving systems and smart city infrastructure. 
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