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Abstract—This paper provides an overview of recent standard-
ization efforts in 3GPP to integrate AI/ML-based predictive mo-
bility management into 5G-Advanced networks. It highlights key
motivations for transitioning from reactive handover mechanisms
to predictive models, summarizes the progression from Release 17
through Release 19, and outlines technical challenges and future
directions for intelligent mobility solutions.

Index Terms—Mobility management, AI/ML, 3GPP, RAN2,
handover prediction, standardization survey

I. INTRODUCTION

In the context of 5G-Advanced and beyond, mobility man-
agement remains a fundamental component for ensuring seam-
less connectivity and maintaining service continuity during
user mobility. Conventional mobility management in 3GPP
networks, as defined in TS 38.331 [4], is predominantly
event-driven—relying on triggers such as Event A2 (serving
cell quality falls below threshold) and Event A3 (neighbor
cell becomes better than serving cell). Although widely de-
ployed, these reactive mechanisms often struggle to cope
with the rapid signal variations encountered in high-mobility
and millimeter-wave (FR2) scenarios, leading to suboptimal
handovers, increased control-plane overhead, and degraded
quality of experience (QoE).

Recognizing these limitations, 3GPP has gradually incor-
porated AI/ML into its standardization roadmap to enable
predictive mobility management. Release 17 initiated this
transition by defining a systematic data collection framework
in TR 37.817 [5] to support ML model training. Release 18
introduced the concept of AI/ML model lifecycle management
(LCM) in TR 38.843 [6], enabling model deployment, version-
ing, and fallback strategies across the RAN. Building on this,
Release 19 (TR 38.744 [7]) marked a major milestone by spec-
ifying a unified framework for predictive mobility, including
direct and indirect prediction models, measurement prediction
strategies, evaluation metrics, and enhancements to RRC sig-
naling through the introduction of the predictionReport
Information Element (IE).

State-of-the-art prediction models based on deep learning
architectures, such as Long Short-Term Memory (LSTM) net-
works and Transformers, have shown promising improvements
in simulation studies, particularly for anticipatory handover
and link-quality estimation. Nonetheless, real-world deploy-
ment challenges persist, such as ensuring model generalization

across diverse topologies, minimizing the computational load
on user equipment (UE), and ensuring model interpretabil-
ity and reliability in operational networks [12]. Future en-
hancements are expected to include tight integration with
reconfigurable intelligent surfaces (RIS), sub-terahertz (sub-
THz) bands, and enriched mobility context information, which
can support more accurate and timely predictions of user
trajectories and channel conditions.

In this paper, we present a comprehensive overview of the
standardization progress and technical directions of AI/ML-
driven predictive mobility management in 3GPP. We first
analyze the limitations of conventional event-triggered mo-
bility mechanisms and highlight the motivations behind the
transition toward predictive models. We then review the de-
velopments from Release 17 to Release 20, focusing on data
collection frameworks, AI/ML model lifecycle management,
measurement prediction schemes, and recent advancements
in handover event forecasting. In addition, we examine the
practical deployment challenges associated with model gen-
eralization, computational constraints, and explainability. Fi-
nally, we discuss ongoing and future standardization efforts,
including the emergence of AI-native mobility architectures,
and identify key research challenges that must be addressed to
enable scalable and interoperable predictive mobility solutions.

II. RRM MEASUREMENT PREDICTION

3GPP Release 19 introduces a standardized framework for
AI/ML-based Radio Resource Management (RRM) measure-
ment prediction, building on the foundational studies con-
ducted in Release 17 (TR 37.817 [5]) and model lifecycle prin-
ciples introduced in Release 18 (TR 38.843 [6]). The objective
of this framework is to enhance the efficiency of mobility-
related measurements by enabling the network to forecast
signal quality indicators—such as Reference Signal Received
Power (RSRP)—across beams, frequencies, and cells, thereby
reducing measurement overhead and improving the timeliness
and accuracy of mobility decisions.

This approach reflects a shift from a reactive, measurement-
triggered handover mechanism toward a predictive paradigm
where AI models proactively estimate future radio conditions
based on historical patterns. The resulting predictions can be
used to support smarter measurement gap configuration, early
beam switching, and inter-frequency handover preparation.
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The measurement prediction framework introduced in Re-
lease 19(TR 38.744 [7]) defines key architectural components
including prediction input granularity (e.g., sliding/non-sliding
windows), data source integration, model update cycles, and
signaling enhancements for conveying predicted metrics. In
parallel, Release 20 is expected to provide further enhance-
ments by expanding the scope toward multi-RAT (Radio
Access Technology) prediction and AI-native control loop
integration. For example, prediction mechanisms are being
studied to anticipate the degradation of LTE radio conditions,
enabling earlier measurement triggering on NR cells, which
improves handover reliability across RAT boundaries.

Additionally, Release 20 explores enhanced RRM prediction
capabilities that tightly integrate with the AI-native mobility
architecture (RP-240004 [9]), where predicted measurements
are not just input to mobility logic but actively guide schedul-
ing and radio resource allocation. This enables the gNB to
dynamically reconfigure measurement configurations, such as
measurement gaps and reporting frequency, based on antici-
pated signal transitions.

Together, these developments support the long-term goal
of reducing UE-side measurement burden, increasing RAN
intelligence, and enabling fully predictive mobility behaviors
that scale across frequency layers, RATs, and vendor imple-
mentations.

A. Prediction Approaches

1) Temporal Prediction: Temporal prediction focuses on
estimating future signal quality (e.g., Layer 3 Reference Signal
Received Power, or L3-RSRP) based on historical measure-
ments within the same frequency band. Two representative
prediction strategies are studied: non-sliding (static) and slid-
ing (dynamic) window methods.

The static (non-sliding) method uses only past actual mea-
surements without reusing previous predictions. This limits
error accumulation but may underperform in situations where
continuous estimation is necessary. In contrast, the sliding
method simulates real-world measurement skipping by using
both past predictions and actual measurements as input for on-
going prediction. This approach reflects practical deployments
where reducing reporting frequency can lower signaling load
but increases the risk of compounding prediction errors.

Fig.1 visualizes the core difference between the two ap-
proaches. In the non-sliding case, the prediction model is fed
only with a fixed-size sequence of past measurements and
is updated periodically without overlap. In contrast, the slid-
ing method employs overlapping windows where predictions
from previous windows can feed into subsequent ones, better
capturing temporal dynamics at the cost of potential error
propagation.

These methods are formally studied in 3GPP Release 19
under the AI/ML for Mobility study item (TR 38.744 [7]) as
part of the RRM measurement prediction use case. The slid-
ing window strategy is particularly relevant to high-mobility
scenarios such as vehicles or trains, where the signal quality
changes rapidly and requires continual forecasting. In such

Fig. 1: Temporal prediction methods: (a) non-sliding prediction using disjoint
windows, (b) sliding prediction with overlapping windows and recursive input.

cases, maintaining a low reporting burden while ensuring
prediction robustness is critical.

To improve accuracy under sliding scenarios, filtering mech-
anisms have been investigated. These include reusing Layer
1 (L1) filtered data or combining previous predictions with
new observations. The effectiveness of these filtering methods
depends on user mobility speed, prediction window size,
and variability of radio conditions. 3GPP also discusses the
potential for adaptive window lengths, where the Observation
Window (OW) and Prediction Window (PW) are dynamically
adjusted based on environment, speed, or service type, to
balance latency and reliability.

2) Spatial Prediction for Beam Reduction: In beam-based
wireless systems, UEs often need to measure signal strength
across multiple spatial beams, which creates a heavy measure-
ment burden. Spatial prediction techniques aim to reduce this
overhead by enabling the network to infer the signal quality
of unmeasured beams based on a subset of observed beams.

According to 3GPP TR 38.744 [7], both cell-level and
beam-level measurement prediction are within the scope of
RRM measurement prediction. In particular, spatial-domain
beam prediction, referred to as Beam Measurement Case 1
(BM-Case 1), allows the network to estimate the signal quality
of non-measured beams using a subset of directly measured
beams. This approach is supported by AI/ML models trained
to learn spatial correlations among beams, often based on
physical proximity, angular separation, or historical signal
patterns.

By selectively measuring only a fraction of the available
beams and predicting the rest, the UE can significantly reduce
energy consumption and signaling overhead. However, the ef-
fectiveness of this strategy depends on the beam selection pol-
icy—such as deterministic selection or learned skipping—and
the ability of the AI model to generalize under partial observa-
tions. 3GPP further discusses mapping relationships between
wide beams and narrow beams, and how to exploit such
structure to improve prediction accuracy.

Fig. 2 illustrates this concept. A subset of beams is directly
measured by the UE (shown in yellow), while the remaining
beams (shown in green) are inferred by the network using

1312



Fig. 2: Spatial beam prediction in a gNB-UE system.

spatial prediction. This mechanism supports overhead-efficient
beam management and enables scalable mobility enhance-
ments for multi-beam systems.

3) Generalization Across Frequencies and Cells: A sig-
nificant challenge in AI/ML model deployment is ensuring
that trained models can generalize across different frequency
layers or cell configurations. For inter-frequency prediction,
model accuracy varies depending on the degree of correlation
between frequency bands (e.g., predicting 2 GHz performance
based on 4 GHz data). Therefore, correlation analysis between
bands is critical before reusing models in new spectrum
environments.

Similarly, inter-cell generalization—using a model trained
on one cell in another—requires that the spatial propagation
characteristics of the cells are sufficiently similar. Techniques
such as cluster-based training, where models are trained using
data from multiple neighboring cells, have shown more consis-
tent performance. These methods help mitigate the limitations
of deploying single-cell trained models in complex and diverse
network topologies.

B. Standardization Considerations

To support these AI-based prediction mechanisms, 3GPP
has proposed protocol extensions that ensure interoperabil-
ity and integration with existing RRC frameworks. For in-
stance, the predictionReport Information Element (IE),
introduced in Release 19, is designed to convey predicted
measurement values and related metrics to the base station.
This facilitates proactive handover and measurement skipping
operations while maintaining control plane integrity [4].

Overall, the RRM measurement prediction framework in-
troduced in Release 19 [7] represents a shift toward intelli-
gent, context-aware mobility management. It offers a modular
architecture that accommodates both temporal and spatial
prediction needs, while also emphasizing the importance of
cross-domain generalization for scalable deployment.

III. MEASUREMENT EVENT PREDICTIONS

A. AI/ML for Predictive Mobility Management

Conventional mobility management in cellular networks
relies heavily on reactive measurement event reporting mech-
anisms. In this traditional approach, user equipment (UE)

Fig. 3: RSRP-based Event A3 triggering and handover sequence.

monitors radio conditions and transmits measurement reports
to the base station when specific thresholds are met. According
to 3GPP TS 38.331 [4], Event A3 is triggered when a neigh-
boring cell’s signal becomes better than that of the serving
cell, while Event A2 is initiated when the serving cell’s signal
quality drops below a certain threshold. While these mech-
anisms are standardized and widely implemented, they are
inherently reactive. The latency can be particularly detrimental
in high-mobility scenarios such as vehicular environments or
in high-frequency FR2 deployments, where radio conditions
change rapidly and signal degradation can occur before a
handover can be effectively initiated. Fig. 3 visualizes this
procedure by showing the sequential timing of key handover
events—starting from the A3 event trigger, through the Time-
to-Trigger (TTT), to the measurement report and handover
execution steps.

To address these shortcomings, AI/ML-based predictive
mobility management is emerging as a transformative solution.
The core idea is to shift from reactive to proactive mobility
decisions by forecasting the future state of radio conditions
and handover needs. This enables the network to initiate
handover preparation and execution before adverse conditions
are encountered, thereby minimizing handover failures and
ensuring seamless connectivity.

Multiple AI/ML modeling approaches are under consider-
ation. One popular approach treats the problem as a time-
series forecasting task, where models such as LSTM networks
or Transformer-based models predict future values of signal
quality indicators like RSRP and RSRQ [7]. These predictions
can be used to preemptively trigger handover actions.

Alternatively, classification models can be trained to predict
whether a handover will be required in the near future based on
input features such as historical signal metrics, UE location,
speed, mobility pattern, and surrounding network topology.
Regression models may also estimate the exact time at which
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an event (e.g., A2 or A3) is likely to occur, providing fine-
grained control over handover timing [12].

Federated Learning (FL) has been identified as a key
enabling technology for training predictive mobility models in
distributed environments. In FL, model training is performed
locally at UEs or edge nodes using their own data, and
only the model updates are shared with the central server
[8]. This approach preserves data privacy, reduces backhaul
communication overhead, and enables collaborative training
across diverse network segments. This is particularly important
for real-world deployments, where centralized training may be
impractical or undesirable.

These predictive methods offer several benefits over tradi-
tional mechanisms. They enable proactive handover prepa-
ration, reduce the risk of radio link failure, and improve
quality of service for end users. Moreover, by predicting
mobility trajectories and dwell times in cells, they can help
avoid unnecessary handovers and reduce signaling overhead,
contributing to more efficient radio resource utilization.

Recent developments in 3GPP Release 20 further expand
the role of AI/ML in predictive mobility by exploring its ap-
plicability to radio link failure (RLF) forecasting and adaptive
Conditional Handover (CHO) management [9]. RLF predic-
tion aims to proactively detect and mitigate impending link
breakdowns using real-time degradation patterns and historical
handover performance. Meanwhile, CHO procedures are being
enhanced by allowing AI-based models to dynamically con-
figure trigger conditions—such as offset thresholds and Time-
to-Trigger (TTT)—based on predicted signal quality trends.
These directions reflect a broader transition toward AI-native
mobility architectures, where model-driven inference loops
are embedded directly into control-plane logic to support
autonomous, context-aware handover strategies.

B. Standardization Activities and Technical Frameworks

3GPP has formally acknowledged the applicability of
AI/ML in mobility management through a series of study and
work items. Release 17 marked the beginning of standardized
efforts to support AI/ML in mobile networks, focusing on
establishing robust data collection frameworks. In Technical
Report 37.817 [5], 3GPP outlined mechanisms to collect
relevant radio and context data at both the UE and network
side, which are essential for training and validating machine
learning models. This includes logging of measurement events,
mobility-related KPIs, and metadata like location and UE
capability information.

Building on this foundation, Release 18 introduced the
AI/ML Model Lifecycle Management (LCM) framework, doc-
umented in TR 38.843 [6]. This framework defines the opera-
tional processes required to support AI/ML models within the
RAN, including model training, deployment, validation, ver-
sion control, and fallback strategies. It also considers interfaces
and signaling mechanisms needed for model inference and
feedback within the gNB, and ensures coordination between
RAN layers and AI agents.

Fig. 4: Predictive handover framework based on AI/ML.

Release 19 represents a significant step forward with TR
38.744 [7], which introduces concrete predictive mobility
management schemes under RAN2. Two primary approaches
are standardized:

• Indirect Prediction: Models predict future signal quality
metrics, such as RSRP and RSRQ. These predicted values
are compared against conventional thresholds (e.g., A2,
A3) to determine if handover preparation should begin.

• Direct Prediction: AI/ML models estimate the proba-
bility or timing of future measurement events directly,
bypassing the need for intermediate metric predictions.
This allows for faster and potentially more accurate
decision-making.

These predictive models are intended to be integrated
seamlessly with the existing RRC architecture. To facili-
tate this, the concept of a new RRC signaling message,
predictionReport, has been proposed for standardization
in TS 38.331 [4]. This IE enables the UE to report predicted
future events or measurements, which the gNB can use to
trigger conditional or proactive handover procedures. This
aligns with ongoing enhancements to CHO functionality and
is designed to support proactive mobility strategies.

Figure 4 illustrates the overall predictive handover frame-
work enabled by AI/ML. In this architecture, the UE provides
context-aware inputs such as signal history, location, and speed
to a trained prediction model. The model forecasts mobility
events in advance, allowing the gNB to prepare conditional
handover configurations ahead of time.

Overall, these standardization activities aim to build a
modular, extensible framework that accommodates a wide
variety of predictive mobility models while ensuring interop-
erability across vendors and deployment scenarios. The long-
term vision includes the integration of additional enabling
technologies, such as RIS and sub-THz bands, to further
enhance the accuracy and responsiveness of AI-driven mobility
solutions [7].

In this context, Release 20 marks a significant evolution by
launching the “AI-Native Mobility Architecture” study item
(RP-240004 [9]), which extends predictive mobility from a
functional enhancement to a foundational control framework
within the RAN. This work item envisions embedding model-
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Fig. 5: LSTM-based model for predicting mobility events using time-
sequential features such as signal quality, location history, and speed.

driven inference loops directly into RRC procedures and
handover decision logic, allowing for real-time, closed-loop
control of mobility state transitions. Furthermore, it explores
cross-layer coordination across RRC, NGAP, and OAM sig-
naling interfaces to support dynamic AI capability negotia-
tion, model selection, and policy-driven mobility orchestration.
These efforts signal a shift from modular AI enhancements to
system-wide AI-native integration in future 5G-Advanced and
6G architectures.

C. Technical Considerations

The predictive mobility architecture requires not only ac-
curate modeling but also careful consideration of practical
deployment constraints in real-world mobile networks. While
AI/ML algorithms can demonstrate high accuracy in con-
trolled environments, their integration into commercial cellular
systems must account for computational feasibility, energy
efficiency, and real-time responsiveness.

One major challenge arises from the limited computational
resources and power budgets of UE. Complex neural network
models, such as LSTMs and Transformers, can be compu-
tationally intensive and may not be suitable for real-time
inference on battery-powered devices without significant opti-
mization. Techniques such as model pruning, quantization, and
edge-optimized neural networks are therefore being considered
to reduce latency and energy consumption during on-device
inference [6].

Figure 5 illustrates the architecture of an LSTM-based
model designed to predict mobility events. The model takes
time-sequential input features—such as signal quality, loca-
tion history, and user speed—and processes them through a
sequential LSTM layer with 50 units. By learning temporal
patterns in the input sequences, the model produces an output
that can be used to anticipate future mobility events (e.g., A3
trigger), enabling proactive handover preparation.

In predictive mobility, LSTMs have been successfully ap-
plied to forecast mobility event timing and to model signal
behavior under measurement skipping scenarios [7]. Com-

pared to shallow models, they offer greater robustness in high-
mobility and mmWave environments, where signal variation is
both rapid and unpredictable.

Beyond the hardware limitations, ensuring the generaliza-
tion of AI/ML models across diverse deployment scenarios
is another critical concern. Networks are deployed in het-
erogeneous environments—urban, rural, indoor, high-speed
vehicular, and more. A model trained in one scenario may
fail to perform accurately in another due to domain shift. This
underscores the need for extensive cross-scenario validation
and possibly the use of transfer learning or meta-learning
approaches to enhance model adaptability [6].

To mitigate the risks associated with model drift and
changing network conditions, the AI/ML Model Lifecycle
Management (LCM) framework introduced in TR 38.843 [6]
recommends robust validation pipelines, periodic retraining
procedures, and fallback mechanisms. These mechanisms en-
sure that outdated or poorly performing models can be quickly
identified and replaced or bypassed, thus maintaining the
reliability and safety of mobility decisions made by the AI
system.

Despite the simulation-based performance improvements
reported in TR 38.744 [7], the primary objective of standard-
ization remains to develop a generic, interoperable framework
that is vendor-neutral and adaptable to real-world networks.
The intent is not only to achieve performance gains but also to
create trustable and explainable models that mobile operators
can deploy and manage effectively.

In conclusion, the success of predictive mobility manage-
ment hinges not only on algorithmic accuracy but also on prac-
tical deployability, cross-environment generalization, lifecycle
robustness, and compatibility with evolving network architec-
tures. These considerations remain central to the ongoing work
in 3GPP and are likely to shape future releases as AI/ML
becomes an integral part of mobile network intelligence.

IV. OPEN CHALLENGES AND FUTURE WORK

To provide a structured perspective on future directions re-
lated to Release 20, this section categorizes the challenges and
opportunities into three domains: technical, standardization,
and broader implementation considerations.

A. Technical Challenges and Enhancements
Model Generalization and Computation: AI/ML models

for predictive handover are often trained on deployment-
specific data, which limits generalization across diverse en-
vironments. Lightweight and energy-efficient models (e.g.,
quantized or pruned LSTMs) are necessary to support real-
time decision-making under tight latency constraints on user
equipment (UE) with limited compute capabilities. Release 20
emphasizes the importance of supporting model negotiation
and inference offloading strategies [9].

Real-Time Inference: Mobility decisions in high-mobility
scenarios require inference within tens of milliseconds. Re-
lease 20 addresses this by enabling inference capability sig-
naling during RRC connection setup and supporting offline
fallback models when real-time prediction is infeasible.
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Emerging Technologies: Reconfigurable Intelligent Sur-
faces (RIS) and sub-terahertz (sub-THz) communications are
expected to enhance spatial and temporal prediction fidelity.
These technologies enable more controllable radio environ-
ments and richer contextual inputs for AI models [9].

B. Standardization Aspects

Lifecycle Management and Model Interoperability: Re-
lease 20 introduces model-ID-based signaling and lifecycle
management (LCM) to improve interoperability in multi-
vendor networks. However, challenges remain regarding model
update synchronization, fallback handling, and cross-layer
alignment.

Cross-Layer Signaling: The AI-Native Mobility Archi-
tecture study in Release 20 proposes embedding AI-driven
decision-making into RRC, Next Generation Application Pro-
tocol (NGAP), and Operations, Administration, and Mainte-
nance (OAM) signaling. Harmonizing these layers to support
distributed inference and lifecycle coordination is critical for
scalable deployments.

Explainability and Trust: 3GPP SA5 and SA3 are defin-
ing standards for AI trust, robustness, and traceability [10].
Release 20 incorporates the need for explainable AI systems
that provide confidence levels, trigger explanations, and audit
mechanisms to support reliable operations.

C. Other Implementation Considerations

Data Availability and Training: Collecting high-quality
mobility traces and signal measurements remains difficult
due to regulatory and operational constraints. OAM-based
data collection and federated learning frameworks are being
explored to address these limitations [11].

Policy-Aware Prediction: Future systems must sup-
port policy-driven, service-differentiated mobility—e.g., Ultra-
Reliable Low-Latency Communication (URLLC) flows re-
ceive higher mobility prediction priority than enhanced Mobile
Broadband (eMBB) or massive Machine-Type Communication
(mMTC). This introduces a new layer of complexity that spans
AI, session management, and policy control.

Deployment-Ready Architectures: Beyond model accu-
racy, future architectures must be robust to adversarial condi-
tions, auditable, and seamlessly integrated with existing infras-
tructure. Predictive mobility must co-exist with conventional
fallback procedures and support real-world traffic variability.

In summary, Release 20 lays the groundwork for AI-native
mobility through enhanced inference architecture, signaling
support, and integration of emerging technologies. Future
work must continue to address cross-domain interoperability,
lightweight modeling, and trustworthy AI frameworks to real-
ize predictive mobility at scale.

V. CONCLUSION

This paper has provided a comprehensive survey of AI/ML-
driven predictive mobility management within the 3GPP stan-
dardization framework, with a particular emphasis on the
technical developments from Release 17 through Release 20.

We reviewed the transition from reactive to predictive mobility,
discussed the design and application of measurement and
event prediction models, and examined challenges in model
deployment, generalization, and real-time execution. We also
explored the emerging AI-native mobility architecture intro-
duced in Release 20, highlighting the incorporation of closed-
loop inference, multi-layer signaling support, and integration
of RIS and sub-THz technologies.

As wireless networks evolve toward 6G, predictive mobility
will be a cornerstone for achieving seamless connectivity and
service continuity under diverse mobility conditions. Contin-
ued research is needed to enhance model robustness, optimize
signaling overhead, and ensure multi-vendor interoperability.
The findings and frameworks summarized in this paper serve
as a foundation for future innovations in intelligent mobility
management systems.
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