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Abstract—Autonomous unmanned aerial vehicles (UAVs) de-
ployed in mobile access environments encounter challenges aris-
ing from dense and irregular obstacles as well as stringent energy
constraints. Reliable trajectory planning in such a context is
critical, since UAVs must maintain connectivity and coverage
while navigating through cluttered spaces. Existing diffusion-
based reinforcement learning approaches have been explored,
but they are generally trained on entire trajectories, which
limits their generalization and leads to high re-planning latency
in safety-critical scenarios. To address these limitations, we
propose a sub-path decomposition framework that generates
candidate segments with a diffusion model and applies rein-
forcement learning to select among them. This design enables
finer-grained decision-making, improved safety, and low-latency
trajectory updates. Simulations in procedurally generated mobile
access environments demonstrate higher success rates and lower
collision risks compared to heuristic baselines, while maintaining
comparable energy efficiency. Furthermore, the diffusion model
trained with sub-paths exhibits lower collision rates and shorter
trajectories than the model trained on full paths. This combina-
tion of generative modeling and reinforcement learning provides
a scalable approach to safe UAV navigation in mobile access
scenarios.

I. INTRODUCTION

Background and Motivation. Unmanned aerial vehicles
(UAVs) have emerged as a platform for applications such as
mobile access, surveillance, delivery, and disaster response. In
mobile access environments, UAVs are often required to act as
aerial base stations or coverage extenders while simultaneously
ensuring safe and energy-efficient flight in cluttered spaces
with dense, irregular obstacles. These settings present substan-
tial challenges. Vehicles must navigate around buildings, street
furniture, and utility poles under on-board energy capacity.
Traditional path planning methods such as rapidly-exploring
random tree (RRT) and A∗ algorithm can provide feasible
paths in static maps, but often require frequent global re-
planning when local map updates or constraint changes occur,
leading to computational overhead and latency. End-to-end
trajectory learning and deep reinforcement learning (DRL)
offer adaptability by learning navigation policies directly from
interaction with the environment, enabling UAVs to react to
changes and optimize trajectories in a data-driven manner.
Generative models have recently been explored for trajectory
generation because they can produce diverse candidate trajec-
tories conditioned on the UAV state, target, and obstacle maps,
capturing multi-modality and uncertainty. However, training

on full trajectories and re-planning entire paths in real time
can be inefficient. This motivates a sub-path decomposition
strategy in which trajectories are segmented into parts. By
resampling only the affected sub-paths in response to en-
vironmental changes, latency can be reduced. Furthermore,
diffusion-based sub-path generation is combined with an on-
line selection mechanism inspired by reinforcement learning
concepts, where candidate segments are evaluated through a
Q-function–style scoring formulation. This scoring balances
safety, energy efficiency, and smoothness by rapidly assessing
features such as kinematics, obstacle clearance, energy con-
sumption, and model uncertainty, thereby enabling low-latency
and safe trajectory updates.

Contribution. The main contributions of this research are
summarized as follows.

• Diffusion-based sub-path trajectory generation: A diffu-
sion model generates diverse candidate UAV trajecto-
ries segmented into fixed-length time windows, enabling
efficient re-planning by resampling only affected sub-
segments.

• RL-based trajectory selection with uncertainty awareness:
A Q-function guided by a reward formulation rapidly
evaluates and selects among candidate sub-paths using
features such as kinematics, obstacle clearance, energy
consumption, and model uncertainty.

• Integrated framework for UAV navigation in mobile
access environments: The combination of diffusion-
based trajectory generation and RL-based online selec-
tion yields a scalable, low-latency, and energy-efficient
navigation strategy tailored to mobile access scenarios.

Organization. The remainder of this paper is organized as
follows. Section II provides an overview of prior research,
focusing on reinforcement learning (RL) approaches for UAV
navigation and diffusion model-based methods for trajectory
planning. Section III presents the main concept of the pro-
posed UAV path stabilization approach. Section IV presents
a performance evaluation of the proposed algorithms. Lastly,
Section V concludes the paper with a summary of the findings
and implications for future research directions.
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Fig. 1: System overview

II. RELATED WORK

A. Reinforcement Learning for UAV Navigation

UAV navigation is regarded as a robust solution for au-
tonomous flight, obstacle avoidance and trajectory optimiza-
tion in complex and uncertain environments. While traditional
path planning algorithms such as A∗ and Dijkstra remain
effective in static or low-dimensional scenarios, their reliance
on pre-computed maps and high re-planning costs limits their
applicability in dynamic settings. DRL emerged as a promising
alternative by formulating navigation as a Markov Decision
Process (MDP) and allowing agents to learn policies through
interaction with the environment [1]–[3]. By leveraging neural
function approximators, DRL methods are capable of handling
high-dimensional state spaces and can adapt to previously
unseen situations [4]. Representative algorithms include value-
based methods such as the deep q-network (DQN), policy
gradient methods such as proximal policy optimization (PPO),
and hybrid approaches such as Actor-Critic algorithms [5],
[6]. These approaches have been widely applied to UAV
navigation tasks, including collision avoidance in cluttered
3D environments, autonomous exploration, and energy-aware
trajectory planning [7].

Nevertheless DRL-based navigation is not without limita-
tions. A well-known drawback is its high sample complexity,
requiring large values of training data and extensive simulation
before deployment [8]. Furthermore DRL policies often suffer
from limited generalization when transferred from simulation
to the real world due to domain shift, and real-time respon-
siveness can be hindered by slow re-planning speeds in highly
dynamic environments [9]. To address these challenges recent
advances have incorporated transformer-based architectures
for better temporal reasoning, model-based RL to improve
sample efficiency, safe RL to enforce safety guarantees during
exploration, and self-supervised pretraining to enhance rep-
resentation learning [10], [11]. Such extensions highlight the

growing potential for adaptive UAV navigation in real-world
urban scenarios.

B. Diffusion Model Based Trajectory Planning

Diffusion models have recently emerged as generative
frameworks in computer vision, particularly for image synthe-
sis, by leveraging a forward process that gradually adds noise
to data and a reverse process that removes noise to reconstruct
realistic samples [12]. This iterative refinement mechanism has
been extended to trajectory generation, enabling the synthesis
of feasible and realistic paths such as drone flight routes or
robotic trajectories [13], [14]. Unlike conventional approaches
that predict a trajectory in a single step, diffusion-based
methods benefit from iterative refinement through multiple
denoising stages [15]. This property makes them particularly
effective characterized by uncertainty and complex constraints.
Recent research on diffusion models for trajectory generation
highlights several advantages. First, they provide flexible and
practical path generation under diverse constraints, such as
varying goal locations. Second, the iterative denoising process
naturally yields not only a single solution but also a diverse
set of candidate trajectories, thereby enhancing solution di-
versity [16], [17]. Third, diffusion models can be trained
using real-world trajectory data alone, improving generaliza-
tion ability and practical applicability. Moreover, compared
to earlier generative frameworks such as GANs and VAEs,
diffusion models mitigate issues such as training instability and
mode collapse while offering strong representational power for
spatiotemporal data. Their conditional generation capability
further supports the incorporation of task-specific constraints,
including obstacle avoidance, goal conditions, and energy lim-
itations. These properties make diffusion models promising for
real-world applications such as autonomous driving, robotics,
and drone mission planning, and position them as a central
direction for future trajectory generation research.
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III. PROPOSED METHOD

A. System Model

UAV Trajectory Metrics. Fig. 1 presents the architecture
of the proposed system. In the mobile access environment,
the UAV prioritizes energy efficiency, with diffusion models
employed for trajectory generation. Furthermore, sub-path-
based trajectory planning is carried out using an online selec-
tion mechanism inspired by reinforcement learning concepts
through a Q-function evaluation. The UAV trajectory planning
problem is modeled as a discrete-time system with simplified
kinematics and energy accounting. The state at time t is

yt = [pt, vt, g − pt, Et], (1)

where pt ∈ R3 and vt ∈ R3 denote the UAV position and
velocity, g is the goal position, and Et ∈ [0, 1] is the residual
energy ratio. Given a candidate trajectory τ = {p1, . . . , pT },
we define the following geometric quantities,

L(τ) =
∑

i = 1T−1∥pi+1 − pi∥, (2)

κ(τ) =
T−1∑
i=2

arccos

(
(pi+1 − pi) · (pi − pi−1)

∥pi+1 − pi∥ ∥pi − pi−1∥

)
, (3)

dmin(τ) = min
i

d(pi;O), (4)

where L(τ) is the total Euclidean path length, κ(τ) is the
aggregate turning angle that serves as a smoothness measure,
and dmin(τ) is the minimum Euclidean clearance from the
trajectory to the obstacle set O with d(·;O) denoting the point-
to-obstacle distance.
Energy consumption. Energy consumption follows a multiro-
tor UAV propulsion model with optional compute power. For
segment speed V and local turn radius r (estimated from three
consecutive points), the propulsion power is

Pprop(V, r) = P0

(
1 + 3V 2

U2
tip

)
+ Pi ϕ(V, r)

+ 1
2 d0 ρ sAV 3, (5)

where ϕ(V, r) =
√

1 + V 4

r2g2 for turning flight, and ϕ(V,∞) =√
1 + V 4

4v4
0
− V 2

2v2
0

for straight or hover. Here P0 and Pi are
profile and induced power coefficients, Utip is the rotor tip
speed, v0 is the induced velocity in hover, d0 is the fuselage
drag ratio, ρ is air density, s is rotor solidity, and A is rotor
disc area. The onboard compute power is modeled as

Pcomp(u) = Pidle + u (Pmax − Pidle), u ∈ [0, 1], (6)

where Pidle and Pmax are idle and maximum compute power,
and u is the utilization factor. Hence the total energy along a
trajectory τ is

E(τ) =
T−1∑
i=1

(
Pprop(V, ri) + Pcomp(ui)

)
∆ti,

∆ti =
∥pi+1 − pi∥

V
, (7)

where ri is the local turn radius and ∆ti is the duration of
each segment under cruise speed V .

B. Sub-Path Diffusion for Candidate Generation

To improve adaptability to changing environments, the full
UAV trajectory is decomposed into fixed-length time-step sub-
paths. Each sub-path is generated independently, which en-
ables efficient local re-planning when environmental changes
occur or new static obstacles are detected. Candidate sub-paths
are generated using a conditional diffusion model, where the
diffusion process consists of a forward noise-adding stage and
a reverse denoising stage. Given a sub-path trajectory x0, the
forward process gradually adds Gaussian noise.

q(xt|xt−1) = N
(
xt;

√
1− βt xt−1, βtl

)
, (8)

where βt is the noise schedule. The reverse denoising process
reconstructs x0 from xT ∼ N (0, I) using a Transformer-based
denoiser ϵθ.

pθ(xt−1|xt, c) =

N

(
xt−1;

1
√
αt

(
xt −

βt√
1− ¯alphat

ϵθ(xt, t, c)
)
, σ2

t l

)
,

(9)

where c encodes conditional information including UAV state,
goal, and static obstacle maps. The denoising network ϵθ is
trained to predict the injected noise diffusion step. The training
loss is defined as

L(θ) = Ex0,t,ϵ∼N (0,1)

[
∥ϵθ(xt, t, c)− ϵ∥22

]
(10)

where xt =
√
ᾱtx0 +

√
1− ᾱt ϵ an the conditional context.

This objective enforces accurate denoising and enables con-
ditional generation of paths. During online navigation, mul-
tiple candidate sub-paths are sampled via denoising diffusion
implicit models (DDIM), providing a diverse set of feasible
trajectories. The set of K candidate trajectories at time t is
represented as

Ct = {(τ (k),Σ(k))}k = 1K , (11)

where τ (K) denotes the k-th trajectory and Σ(k) its variance
estimates. The variance provides an uncertainty score,

U(τ (k)) =
1

T

T∑
i=1

∥Σ(k)
i ∥2, (12)

which is used as part of the reward shaping in the subsequent
decision process. Collision risk for a candidate τ is approxi-
mated via Monte Carlo sampling.

pcol(τ) =
1

S

S∑
s=1

⊮{τ (s) ∩O ̸= ∅}. (13)

At each re-planning step, the diffusion process yields a diverse
set of candidate sub-paths, each annotated with an uncertainty
score and an estimated collision probability. While such di-
versity enhances robustness to environmental variability, it
necessitates a principled selection mechanism.
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C. Reinforcement Learning-Based Path Selection

While the diffusion model provides diverse sub-path candi-
dates, effective online decision making requires selecting the
most suitable option under uncertain conditions. To model this
process, the UAV trajectory planning problem is formulated as
a Markov Decision Process (MDP),

M = {S,A,P, r, γ}, (14)

where S is the state space, A the action space, P the transition
dynamics, r the reward function, and γ the discount factor. The
state st ∈ S at time t is defined as

st =
[
pt, vt, g − pt, Et, L, C,Dmin, hstart, hend, U

]
, (15)

where pt and vt are position and velocity, g−pt is the relative
goal position, Et is the residual energy, L is path length,
C is trajectory curvature, Dmin is the minimum clearance
to obstacles, hstart and hend are the altitudes of the sub-path
endpoints, and U is the uncertainty score estimated from
diffusion variance. The action space is discrete, corresponding
to candidate sub-path selection:

at ∈ A = {1, 2, . . . ,K}, (16)

where K is the number of diffusion-generated candidate sub-
paths.

The reward function is formulated as a weighted combina-
tion of interpretable components that balance safety, efficiency,
and stability:

rt = wg rg(t) + wc rc(t) + wp rp(t) + wd rd(t)

+ we re(t) + wu ru(t) + wv rv(t) + wl rl(t), (17)

where rg(t) and rc(t) are terminal rewards for goal reaching
and collision, rp(t) and rd(t) represent goal-directed progress
and residual distance, re(t) captures energy consumption,
ru(t) penalizes uncertainty, rv(t) enforces trajectory smooth-
ness, and rl(t) encourages maintaining clearance from obsta-
cles. The weights {wg, wc, wp, wd, we, wu, wv, wl} control the
trade-offs among competing objectives.

The Q-function is then defined as

Q(s, a) = E

[ ∞∑
t=0

γt r(st, at)
∣∣∣ s0 = s, a0 = a

]
, (18)

and the sub-path to execute is selected by

a∗ = argmax
a∈A

Q(s, a). (19)

This Q-function search is not a full reinforcement learning
algorithm but rather an online selection mechanism inspired
by RL concepts, enabling principled evaluation and selec-
tion among diffusion-generated candidates. By incorporating
safety, energy efficiency, smoothness, and uncertainty into the
reward formulation, the UAV achieves low-latency and reliable
re-planning in cluttered mobile access environments.

IV. PERFORMANCE EVALUATION

A. Experimental Setup

Training data are generated using sampling-based motion
planning in synthetic 3D environments populated with ran-
domly placed static obstacles. Each scenario specifies a start
position, a goal position, and obstacles modeled as axis-
aligned bounding boxes and spheres. A large-scale dataset
with diverse configurations is prepared to improve general-
ization. The trajectory generator is trained with a conditional
denoising diffusion implicit model. Training uses 50 epochs,
batch size 64, horizon T = 64, and N = 1000 diffusion
steps with v-prediction. Conditions include the start–goal
pair and obstacle maps. At test time, a receding-horizon
planning scheme is adopted. Full trajectories are divided into
fixed-length sub-segments (length 32, stride 16). During re-
planning, only the affected sub-segment is resampled, reducing
latency while preserving global consistency. For each sub-
path, K = 12 candidate trajectories are sampled and evaluated
by a learned Q-function using features such as path length,
curvature, minimum clearance, energy consumption, and dif-
fusion variance as an uncertainty signal. Reward weights
{wg, wc, wp, wd, we, wu, wv, wl} are tuned to balance safety,
efficiency, and smoothness. Performance is measured over
multiple test episodes with random start and goal positions.
Compared methods. The following planners are compared
under an identical evaluation protocol with the same obstacle
maps, start–goal pairs, re-planning horizon, and energy model,
ensuring that performance differences stem only from the
training regime and selection policy.

• Proposed: Segmented diffusion trained on sub-paths with
receding-horizon sampling and RL-based Q-function se-
lection.

• Non-Segmented: The same diffusion architecture trained
end-to-end on full trajectories without sub-path segmenta-
tion, using the same planning and RL algorithm interface
at test time.

• Greedy: A lightweight baseline that, at each step, moves
the UAV along the feasible direction with the largest pro-
jected progress toward the goal while avoiding immediate
collisions. This heuristic is fast but lacks long-horizon
reasoning, which can yield suboptimal routes in clutter.

B. Results and Analysis

Fig. 4 shows representative trajectories sampled by the
diffusion model given obstacle maps, revealing diverse nav-
igation modes such as direct narrow corridors and longer
safer detours. This diversity supplies a rich candidate set for
RL–based selection. Table I reports a quantitative comparison
over 10 test scenarios using path length, total energy, cur-
vature, accumulated acceleration energy, minimum clearance,
and collision rate. The Q-based selection favors safer and
smoother trajectories overall.

Fig. 2 compares mean per-timestep energy over elapsed
time. The Proposed segmented diffusion with RL is low-
est, the Non-Segmented baseline is highest, and Greedy
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TABLE I: Comparison of Trajectory Performance Metrics
between Proposed, Non-Segmented and Greedy Baseline

Metric Proposed Non-Segmented Greedy

Path length 100.14 120.51 98.71
Energy consumption 2837.45 3522.35 3046.03

Curvature 1.90 3.04 2.12
Acceleration energy cost 4.03 20.99 4.69

Clearance 1.24 2.03 0.74

Fig. 2: Mean per timestep energy over elapsed time for
Proposed, Non-Segmented, and Greedy. Each step’s energy
is the sum of propulsion power, affected by forward speed
and turning/curvature, and onboard compute power set by the
workload level.

lies in between. Table I shows total energy of 2837.45J
for Proposed, 3046.03J for Greedy, and 3522.35J for Non-
Segmented. Normalized by path length, energy per meter
further favors Proposed 28.33J/m over Greedy 30.86J/m and
Non-Segmented 29.23J/m. Fig. 3 shows mean curvature per
timestep. Proposed consistently lowers instantaneous curvature
relative to both baselines. In Table I, Proposed achieves the
lowest total curvature 1.90 and low acceleration energy 4.03
while keeping path length close to Greedy, 100.14m and
98.71m respectively, and much shorter than Non-Segmented
120.51m. For clearance, Proposed provides higher margins
than Greedy, 1.24m and 0.74m respectively, and lower than
Non-Segmented 2.03m.

Qualitative examples in Fig. 4 reflect these trends. Greedy
tends to be shorter with sharper turns and smaller obstacle mar-
gins. Non-Segmented often over-extends path length. Proposed
balances length with smoother turns and improved energy
efficiency. Overall, the segmented diffusion and Q-selection
framework improves energy efficiency and smoothness while
keeping path length competitive.

V. CONCLUSIONS AND FUTURE WORK

This paper presented a framework for UAV trajectory plan-
ning in mobile access settings that combines diffusion-based
sub-path generation with an RL-based selection module. The
diffusion model produces diverse candidate trajectories condi-
tioned on start–goal states and obstacle maps, capturing multi-
modality and uncertainty. The RL-based selector evaluates

Fig. 3: Mean curvature per timestep over elapsed time for
Proposed, Non-Segmented, and Greedy. Curvature at each step
is the magnitude of the direction change between consecutive
path segments along the 3D trajectory. Higher spikes indicate
sharper turns.

candidates online to balance safety, efficiency, and smooth-
ness. Experiments in test scenarios show that the Proposed
method achieves the lowest mean per-timestep energy and
the lowest total energy, while also reducing curvature and
acceleration effort. Path length is comparable to Greedy and
shorter than Non-Segmented, and clearance is higher than that
of Greedy but lower than that of Non-Segmented. Normalizing
by distance, energy per meter further favors the Proposed
method. These findings indicate that integrating generative
modeling with RL-based selection yields trajectories that are
more energy-efficient, smoother, and safer without sacrificing
path length.

Several directions remain open for future work. First,
extending the framework to account for dynamic obstacles
and moving agents would enhance applicability in highly
interactive environments. Second, incorporating richer energy
models that consider aerodynamics, payload variations, and
communication workloads can further improve realism. Third,
online adaptation mechanisms such as continual learning or
model predictive updates may reduce sensitivity to distri-
butional shifts in unseen environments. Finally, integrating
the framework with multi-UAV coordination strategies could
enable scalable aerial networks for mobile access and disaster-
response scenarios.
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