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Abstract—While Cooperative Adaptive Cruise Control (CACC)
enhances traffic efficiency by reducing inter-vehicle distances,
shorter headways inevitably make it more challenging to respond
promptly and reliably to unexpected road hazards. To address
this issue, we assume a system in which Connected Vehicles (CVs)
perform real-time hazard detection outside the CACC framework
and disseminate the detection results to all vehicles through RSUs.
To this end, we propose a lightweight model that integrates Graph
Convolutional Networks (GCNs) and Quantum Convolutional
Neural Networks (QCNNs), referred to as Quantum Graph-based
Object Detection (QGOD), which exhibits a clear trade-off between
detection accuracy and processing latency. Furthermore, the model
incorporates a Lyapunov optimization-based control mechanism
to dynamically adjust the model architecture according to traffic
conditions, thereby maximizing the time-average performance.

I. INTRODUCTION

Cooperative Adaptive Cruise Control (CACC) is a key tech-
nology in intelligent transportation systems, enabling vehicles to
maintain shorter headways and thereby improving overall traffic
efficiency [1]. However, as inter-vehicle distances decrease,
unexpected road hazards—such as manholes, construction signs,
or debris—pose critical safety challenges. In such scenarios,
the limited reaction time can result in delayed responses and
potential accidents. To mitigate this risk, Connected Vehicles
(CVs) operating ahead of CACC platoons play a crucial role
by detecting road hazards in advance and transmitting this
information to Roadside Units (RSUs). Through this process,
the RSUs can promptly disseminate hazard information to
CACC platoons, enabling timely and coordinated responses.
Consequently, real-time road hazard detection and information
sharing are indispensable for ensuring the safe operation of
CACC systems [2]. Vision-based hazard detection has been
widely studied, with Convolutional Neural Networks (CNNs)
demonstrating superior accuracy and inference speed compared
to sequential models such as Long Short-Term Memory [3].
Despite these advantages, CNN-based models typically require
millions of parameters and substantial computational resources,
which restricts their feasibility in autonomous vehicles (AVs)
that must operate under strict onboard computing and latency
constraints. Quantum Convolutional Neural Networks (QCNNs)
have recently emerged as a promising alternative. By leveraging
quantum parallelism and entanglement, QCNNs can achieve
CNN-level performance with significantly fewer parameters [4].
This property makes them particularly suitable for resource-
constrained and latency-sensitive AV environments. Similar
to classical CNN-based models, where deeper architectures

Fig. 1: Overall system architecture of the proposed QGOD
framework.

typically yield better performance, quantum models also
demonstrate improved accuracy as the number of PQC layers
increases; however, this inevitably leads to longer inference
times [5].

To address these limitations, this study proposes a Quantum
Graph-based Object Detection (QGOD) architecture that inte-
grates QCNNs with Graph Convolutional Networks (GCNs).
The key idea is to reduce the dimensionality of output
features while maintaining detection performance, thereby
preserving the efficiency of quantum feature extraction while
mitigating computational complexity [6], [7]. This hybrid
design combines the parameter efficiency of QCNNs with the
relational learning capabilities of GCNs, providing a balanced
solution for real-time perception. The overall system concept is
illustrated in Figure 1. In this framework, Connected Vehicles
(CVs) utilize the proposed QCNN-GCN model to detect road
hazards such as potholes, construction signs, and debris. The
detected information is then transmitted to RSUs and shared
with CACC platoons, ensuring timely and reliable hazard
awareness. Furthermore, the system incorporates Lyapunov-
based optimization to guarantee stability and efficiency under
heterogeneous vehicular computing constraints [8].

In summary, CNN-based models face significant compu-
tational and latency constraints that hinder their deployment
in real-time vehicular systems. QCNNs, on the other hand,
achieve parameter efficiency through quantum parallelism and
entanglement, yet their computational burden increases as
the output feature dimensionality grows, leading to higher
inference latency. To overcome these challenges, this study
proposes a QGOD architecture that reduces output feature
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dimensionality while preserving detection performance. By
combining the lightweight encoding advantages of QCNNs
with the relational reasoning capabilities of GCNs, the proposed
model improves both training efficiency and inference speed,
ultimately providing a balanced solution that bridges the gap
between classical and quantum approaches in autonomous
vehicle perception.

II. RELATED WORK

A. CNN-based Road Hazard Detection

Deep learning models, particularly CNN-based detectors,
have been widely applied in autonomous driving for tasks
such as pothole and obstacle detection. Classical models
like YOLO, Faster R-CNN, and Mask R-CNN demonstrate
high accuracy and robustness in structured environments [9].
However, their deployment in AVs faces challenges due to high
computational cost, memory usage, and latency constraints [10].
In AV systems, real-time perception is safety-critical, yet CNNs
typically require millions of parameters and powerful GPU
resources, which are not always feasible in embedded vehicular
platforms [11].

B. Advances in QCNN

CNNs have been widely adopted in vision-based perception
tasks for autonomous vehicles due to their high accuracy
and fast inference capability [12]. Nevertheless, their reliance
on millions of trainable parameters and high computational
costs limits their real-time deployment on resource-constrained
vehicular hardware [13]. To overcome these limitations, QCNNs
replace classical convolution operations with quantum gates
and measurements. By exploiting quantum parallelism and
entanglement, QCNNs can achieve performance comparable to
CNNs while using significantly fewer parameters [4], making
them a promising alternative for lightweight and latency-
sensitive applications in autonomous driving systems [14].
A typical quantum convolutional layer in QCNNs comprises
four key components: (i) an encoder that transforms classical
inputs into quantum states by rotating qubits on the Bloch
sphere, (ii) CNOT gates that generate entanglement among
qubits to capture spatial correlations across image patches, (iii)
measurement in the Z-basis that collapses quantum states into
classical real-valued outputs for subsequent processing, and
(iv) a parameterized quantum circuit (PQC) layer consisting of
RX, CNOT, and CU3 gates with trainable parameters applied
to the CU3 gates.

III. PROPOSED METHOD

A. QGOD for Road Hazard Detection

A Quantum CNN Object Detection (QCOD) model employs
a Classical CNN backbone to extract initial feature maps, passes
them through the Quantum Convolutional Layer, and utilizes a
Detection Head to predict objectness, bounding box coordinates,
and class probabilities, forming a lightweight detection pipeline.

The QGOD model extends QCOD by incorporating a GCN
layer, which aggregates global contextual information based on
node connectivity, thereby capturing richer spatial relationships

among objects in complex scenes and enhancing detection
performance.

Fig. 2 illustrates the architectural overview of the proposed
QGOD models.

1) Quantum Convolutional Layer: The QGOD model first
employs a Classical CNN backbone to extract initial feature
maps, which are subsequently fed into the Quantum Con-
volutional Layer. This layer partitions the input image into
patches, encodes each patch into quantum states, and performs
quantum operations. The primary quantum gates employed in
this process are as follows:

• Rotation gates (Rx, Ry , Rz): Convert real-valued inputs,
such as pixel intensities, into rotation angles for encoding
into quantum states, thereby mapping continuous inputs
into quantum representations.

• CNOT gates: Introduce entanglement between qubits,
enabling the capture of local features within a patch, ef-
fectively serving as the quantum analogue of convolutional
filters in classical CNNs.

• CU3 gates: Parameterized controlled rotation gates that
perform data-dependent transformations, enhancing the
ability to learn complex feature interactions.

By leveraging this combination of quantum gates, the Quantum
Convolutional Layer achieves high representational capacity
with significantly fewer parameters than classical convolution,
while quantum entanglement allows the effective extraction of
nonlinear relationships within each patch.

2) Graph Convolutional Layer: The feature maps extracted
from the Quantum Convolutional Layer are processed by a post-
activation block consisting of batch normalization and ReLU,
followed by conversion into a grid-structured graph. Each grid
cell is defined as a node, and edges are constructed based on
four-neighborhood adjacency and self-loops. The channel value
at each node corresponds to the feature dimension obtained
after Quantum Convolutional Layer-based quantum operations,
measurement, and a subsequent linear transformation.

The GCN aggregates information from neighboring nodes
to expand local features into global contextual representations.
The update rule of the GCN is expressed as

h(l+1)
v = σ


 �

u∈N (v)∪{v}

ÂvuW
(l)h(l)

u


 , (1)

where h
(l)
v denotes the embedding of node v at the l-th layer,

Â is the normalized adjacency matrix with self-loops, W (l)

is a learnable weight matrix, and σ is a nonlinear activation
function. This operation preserves local spatial structures while
effectively incorporating global information, and it can also be
applied to multi-resolution feature maps for learning contextual
information at different scales.

3) Classical Head: The multi-resolution feature maps
enhanced by the GCN are finally passed to the Classical
Head. At each grid location, predefined anchors with various
scales and aspect ratios are generated, and the detection
head simultaneously predicts objectness scores, bounding box
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Fig. 2: Architectural overview of the QGOD models.

coordinates, and class probabilities. During training, IoU-based
matching is employed to assign positive and negative samples.
The final outputs consist of objectness scores, location offsets,
and class predictions, enabling real-time object detection in
autonomous driving scenarios.

B. Lyapunov Control for Real-Time Detection

1) Queue Modeling for QGOD Processing: To model the
delay problem in the QGOD framework, we consider a discrete-
time queueing system where Q[t] denotes the queue length at
time t, a[t] represents the number of new data samples arriving
at time t, and b(α[t]) denotes the processing rate determined by
the selected PQC-depth α[t]. The queue dynamics are governed
by

Q[t+ 1] = max(Q[t]− b(α[t]), 0) + a[t], (2)

where

• a[t]: arrival process, i.e., number of images arriving at
time t,

• b(α[t]): departure process, i.e., number of images pro-
cessed under the chosen PQC-depth α[t].

A larger queue length Q[t] corresponds to longer latency,
whereas a smaller Q[t] ensures real-time responsiveness. There-
fore, maintaining queue stability, i.e., keeping the time-average
queue length bounded, is crucial for preventing excessive delays
in real-time autonomous driving systems.

2) Time-average QGOD Model Control: To balance detec-
tion accuracy and queue stability, we employ the Lyapunov
Drift-Plus-Penalty optimization framework. The objective is to
maximize the time-average detection accuracy while maintain-
ing queue stability, formulated as

max : lim
T→∞

T−1∑
t=0

A(α[t]) (3)

s.t. lim
T→∞

1

T

T−1∑
t=0

Q[t] < ∞. (4)

The Lyapunov function is defined as

L(Q[t]) =
1

2
(Q[t])2, (5)

with the conditional Lyapunov drift

E[L(Q[t+ 1])− L(Q[t])|Q[t]]. (6)

Fig. 3: Adaptive PQC-depth selection for real-time QGOD
operation via Lyapunov optimization.

The drift upper bound can be derived as

∆(Q[t]) ≤ C + E[Q[t](a[t]− b(α[t]))|Q[t]], (7)

where C is a constant satisfying

1

2
E[a[t]2 + b(α[t])2|Q[t]] ≤ C. (8)

Since neither C nor a[t] can be controlled, the drift-plus-
penalty objective is defined as

α∗[t] ← arg max
α[t]∈A

[V ·A(α[t])−Q[t] · b(α[t])] , (9)

where V > 0 controls the trade-off between detection accuracy
and delay. A smaller number of PQC layers is selected
under large Q[t] to reduce latency, while a larger number
of PQC layers is applied when Q[t] is small to improve
accuracy. This adaptive PQC-depth allocation balances real-
time responsiveness with detection performance.

IV. PERFORMANCE EVALUATION

In this study, the proposed models were evaluated on the
Road Hazard Detection task for Connected Vehicles (CVs). The
dataset employed was developed by KISTI for object detection
applications and consists of GoPro videos recorded on major
roads in Daejeon, South Korea, during July-September 2019
and July-September 2020 using dedicated vehicles. Each frame
was annotated with polygonal object labels as the primary
annotation format, along with bounding box information.
Furthermore, privacy-sensitive regions, such as pedestrians,
faces, and license plates, were anonymized through blurring.
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(a) Manhole

(b) Construction signs & Parking prohibited board

(c) Traffic cone

Fig. 4: Sample images from the dataset representing different
road conditions.

TABLE I: Performance and Complexity Comparison of Classi-
cal CNN, QCOD, and QGOD Models

Model mAP@0.5 (%) Number of
Parameters

Inference
Time (sec)

classical CNN 32.16 190, 280 0.97× 10−2

QCOD(16 channels) 13.56 39, 894 1.33× 10−2

QCOD(32 channels) 34.10 42, 134 1.45× 10−2

QGOD(16 channels) 33.49 40, 198 1.21× 10−2

For the experiments, three classes were selected: Construction
signs & Parking prohibited board, Traffic cone, and Manhole,
comprising a total of 190 images. Among these, 148 images
were used for training and 42 images for testing. All images
were converted to grayscale, resized to a resolution of 90×160
(H×W), and pixel intensities were normalized to enhance
training stability and consistency. To compensate for the limited
number of samples, data augmentation techniques such as
rotation, flipping, cropping, and noise injection were applied to
enhance the diversity of the training dataset. Example images
for each class are provided in Fig. 4.

Table I summarizes the quantitative comparison of detection
performance (mAP@0.5), number of parameters, and inference
time among Classical CNN, QCOD, and QGOD models. The
classical CNN, even when achieving performance comparable
to the quantum models (mAP@0.5 = 32.16%), requires 190,280
parameters and an inference time of 0.97×10−2 seconds, which
highlights its drawback of higher computational complexity.
For the QCOD model, performance and complexity vary with
the number of channels. The QCOD model with 16 channels is
the most lightweight configuration with only 39,894 parameters,
but it yields the lowest mAP@0.5 (13.56%). Increasing the
channel count to 32 improves the mAP@0.5 to 34.10% while
requiring 42,134 parameters and increasing inference time to
1.45 × 10−2 seconds. In contrast, the QGOD (16 channels)
model achieves comparable detection accuracy (mAP@0.5 =

TABLE II: Test Accuracy and Frames Per Second (FPS) by
Number of PQCs

PQC Layers Accuracy (%) Inference Time (sec)

1 33.49 1.21× 10−2

2 38.18 1.90× 10−2

3 44.87 2.43× 10−2
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Fig. 5: Queue backlog dynamics in the Lyapunov-optimized
QGOD model under varying V values. Larger V values place
greater emphasis on model accuracy, resulting in a higher queue
backlog.

33.49%) with 40,198 parameters and 1.21× 10−2 seconds of
inference time, demonstrating a more efficient trade-off between
model complexity and performance compared to QCOD.

To enable real-time inference, we developed a QCNN
model that dynamically adjusts the number of PQC layers
via Lyapunov optimization. Table II presents the performance
and inference latency with respect to the number of PQC
layers. As shown, increasing the number of PQC layers
improves detection accuracy: the test accuracy rises from
33.49% with one PQC layer to 44.87% with three PQC layers.
This improvement is attributed to the enhanced quantum feature
extraction and entanglement representation enabled by deeper
PQC architectures. However, higher accuracy comes at the cost
of increased computational latency. For instance, the single-
layer model infers one image in 1.21× 10−2 seconds, whereas
the three-layer model requires 2.43× 10−2 seconds.

The proposed system employs Lyapunov optimization to
adaptively balance detection accuracy and inference latency by
adjusting the PQC depth according to real-time system states.
Instead of relying on a fixed QGOD architecture, the Lyapunov
controller selects model configurations that ensure queue
stability while achieving the target detection performance.

Fig. 5 illustrates the effect of varying the Lyapunov control
parameter V on queue backlog. Larger V values prioritize
accuracy, leading to the selection of deeper QCNN models and,
consequently, higher queue backlogs. Conversely, smaller V
values favor shallower models with lower latency. In this study,
V = 12, 100, 180 are tested. When V is too small, the queue
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is under-utilized, resulting in degraded performance, whereas
excessively large values cause queue divergence, making them
unsuitable for real-time deployment.

Compared to fixed single-PQC models, the proposed ap-
proach achieves a more effective trade-off between accuracy
and latency. These results demonstrate that Lyapunov-based
control provides a flexible and dynamic framework for opti-
mizing real-time inference in connected vehicle applications.

V. CONCLUSION AND FUTURE WORK

In this study, we proposed a novel road hazard detection
model that integrates QCOD with GCNs, referred to as the
QGOD architecture, which provides three major contributions.
First, even under accuracy levels comparable to quantum
models, conventional CNN-based models still require a large
number of parameters, making them unsuitable for deployment
in real-time and resource-constrained environments such as
autonomous vehicles and edge computing platforms. Second,
the QCOD models exhibit a clear trade-off between detection
accuracy and computational efficiency depending on their
architectural configurations. In contrast, the proposed QGOD
model incorporates graph structural information into the quan-
tum convolutional framework, achieving comparable accuracy
while significantly reducing both the number of parameters
and inference latency. This demonstrates that leveraging graph
connectivity can enhance representational capacity without
increasing computational complexity. Finally, the Lyapunov-
based PQC-depth optimization dynamically adjusts model depth
according to real-time system conditions, effectively balancing
detection accuracy and inference latency. As a result, the
proposed approach enables adaptive detection systems capable
of meeting both real-time and efficiency requirements across
diverse traffic scenarios.

For future work, we plan to extend the proposed model
into a CV-RSU-based content management framework, inte-
grating reinforcement learning policies to establish an end-
to-end perception-decision-making pipeline that encompasses
content generation, storage, and transmission. Although the
introduction of GCN layers has successfully reduced the
number of trainable parameters, the detection performance
remains unsatisfactory. To address this issue, we will strengthen
empirical validation using larger datasets and state-of-the-art
baselines, while further refining the model architecture to
improve both accuracy and efficiency. Furthermore, to support
practical CACC operations, we will develop an enhanced
CV-RSU communication architecture capable of real-time
transmission of hazard detection information, and conduct
an in-depth discussion on the feasibility of practical quantum
hardware implementation, thereby bridging the gap between
theoretical modeling and real-world deployment.
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