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Abstract—Quantum computing is highly sensitive to environ-
mental noise, leading to quantum errors—defined as deviations
between measured and expected outcomes. To mitigate these
errors, various Quantum Error Mitigation (QEM) methods have
been proposed; however, they show limited performance in
complex quantum circuits due to error-propagation caused by
entanglement. In this paper, we propose a novel entanglement-
aware QEM method that simultaneously considers circuit archi-
tecture and entanglement information. Our method achieves high
QEM performance by encoding entanglement strength as self-
attention bias and edge features, thus effectively capturing error-
propagation patterns. Experimental results on complex quantum
circuits demonstrate that the proposed method outperforms
existing QEM approaches and achieves effective error mitigation
across various noise types.

Index Terms—quantum error mitigation, entanglement, quan-
tum computing

I. INTRODUCTION

Unlike classical computing, which utilizes bits that can only
represent binary states of 0 or 1, quantum computing employs
qubits that exhibit a quantum phenomenon called superpo-
sition, allowing them to exist in both states simultaneously.
Among qubits, another phenomenon called entanglement [1]
enables quantum computing to perform exponentially faster
calculations for specific problems [2]. Each qubit collapses
probabilistically to either 0 or 1 upon measurement, requiring
multiple measurements to obtain reliable results. However,
quantum computing is highly sensitive to environmental con-
ditions (e.g., temperature, electromagnetic fields, vibrations),
which often leads to noisy measurement outcomes [3]. These
deviations between noisy results and expected outcomes are
called quantum errors, which represent unwanted phenomena
in quantum circuits.

To minimize these discrepancies, Quantum Error Mitigation
(QEM) methods have been proposed to estimate the expected
results without quantum errors [4]. Existing methods employ
classical noise models [5], [6] to statistically estimate the ex-
pected results. However, these methods suffer from consider-
able inference time when applied to QEM [7]. To address this
limitation, machine learning-based QEM methods have been
proposed recently [8], [9]. Nevertheless, these methods exhibit
low accuracy when applied to complex quantum circuits [10].
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The significant entanglement generated by the complex
quantum circuit architecture propagates errors across the entire
circuit, making it difficult to estimate the expected results [11].
Therefore, an effective QEM method that considers both the
circuit architecture and entanglement information is required.

In this paper, we propose an entanglement-aware QEM
method that can effectively mitigate quantum errors by uti-
lizing entanglement information as self-attention bias and
edge features. Specifically, our proposed method transforms
a quantum circuit into a DAG and encodes entanglement
information as an entanglement-aware weight matrix, while
representing quantum states (from single-qubit gates) and
quantum correlations (from two-qubit gates) as edge features.
Through these encodings, high attention weights are assigned
to areas with strong entanglement, effectively capturing error-
propagation patterns. Subsequently, the entire graph infor-
mation is aggregated to the Learnable Global Aggregation
(LGA) node via the transformer. This aggregated result is then
combined with the noisy output and fed into a regression layer
to estimate the expected result.

To validate the effectiveness of our proposed method, we
compared the mean absolute error (MAE) against existing
QEM methods using simulated datasets of 6-qubit quantum
circuits under a representative noise condition (i.e., incoherent
environment). We further evaluated the method using simu-
lated datasets of 6-qubit and 15-qubit quantum circuits under
various noise conditions, including mixed noise, and IBM
Fake Providers. The results show that our proposed method
outperforms existing approaches and successfully mitigates
quantum errors under various conditions.

The main contributions of this paper are as follows:

1) Proposing a novel entanglement-aware quantum error
mitigation (QEM) method that utilizes the quantum
circuit architecture and entanglement information.

2) Proposing an entanglement-aware weight matrix and
edge features that effectively leverage quantum states
and correlations.

3) Validating our proposed method’s error mitigation per-
formance across various quantum circuit types and noise
conditions.
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Fig. 1. An overview of our proposed method.

This paper is organized as follows. Section II covers the
background, Section III presents our proposed method, Sec-
tion IV describes our experimental results, and the conclusion
is offered in Section V.

II. BACKGROUND

Quantum computing is a computational approach that
leverages the principles of quantum mechanics to process
information. Unlike classical computers, which operate on
bits that represent either 0 or 1, quantum computers use
quantum bits (qubits), which can exist in a superposition
of both states simultaneously [12], [13]. Moreover, two or
more qubits can become quantum mechanically correlated
through a phenomenon known as entanglement—where the
quantum state of each qubit is inseparably linked with others
due to prior interaction. This entanglement persists regardless
of the spatial separation between the qubits [14]. Entangled
states can be classified into various types based on the circuit
architecture, such as Bell states, GHZ states, W states, and
cluster states [15].

Quantum computers perform computations by manipulating
qubits via quantum circuits, which comprise qubits, quantum
gates, and measurement operations. The sequential applica-
tion of quantum gates enables controlled transformations of
qubit states [9], [16]. Effective quantum computation requires
sufficiently strong interactions between qubits and precise
control over environmental factors [17]. However, in practi-
cal implementations, quantum systems are subject to deco-
herence—a phenomenon in which quantum state coherence
is lost—introducing uncontrollable disturbances that degrade
computational accuracy and stability. To store and process
quantum information reliably, quantum systems must be iso-
lated from external noise as much as possible. However,
complete isolation remains technically unfeasible with current
hardware. Consequently, various quantum error mitigation
(QEM) techniques are being actively studied to reduce noise
and improve computational accuracy [17], [18].

QEM is a post-processing technique that statistically cor-
rects for noise present in measurement outcomes after the
execution of quantum circuits. It enables the estimation of

ideal, noise-free expectation values by analyzing the results
of multiple executions of noisy circuits [19], [20]. Rather
than directly eliminating noise, QEM infers the expected
result from repeated runs of logically equivalent circuits. A
representative approach, Zero-Noise Extrapolation (ZNE) [21],
involves executing several instances of a quantum circuit under
varying noise levels. The corresponding expectation values are
then used to construct an extrapolation curve, from which the
zero-noise value is estimated [22].

III. PROPOSED METHOD

In this paper, we propose a novel entanglement-aware QEM
method to address the performance degradation of existing
QEM approaches in complex quantum circuits. Inspired by
prior work [9], we use a DAG transformer on both circuit
architecture and quantum entanglement information. For train-
ing, we use as ground truth the measurement results obtained
by appending the inverse circuit to the original circuit and
measuring the composite circuit, which yields results without
quantum errors.

The Quantum Circuit Encoder (QCE) transforms the quan-
tum circuit into a DAG and extracts circuit architecture and
entanglement information from this DAG, which are encoded
as input vectors for Multi-Head Attention (MHA). In the
Entanglement-aware Quantum Error Mitigator (EQEM), the
Learnable Global Aggregation (LGA) node aggregates the
entire circuit through MHA and is then fed into a regression
layer along with the noisy result to estimate the expected
result. Through this process, our proposed method can achieve
high QEM performance even in complex quantum circuits by
jointly utilizing circuit architecture and entanglement infor-
mation. The details of our proposed method are presented as
follows.

A. Quantum Circuit Encoder

1) DAG: The Quantum Circuit Encoder (QCE) receives
circuit architecture and transforms it into a DAG. Each quan-
tum gate is represented as a node, while quantum states (from
single-qubit gates) and quantum correlations (from two-qubit
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gates) are represented as edges. During the DAG transforma-
tion process, in addition to mapping all gates in the quantum
circuit to nodes, LGA node is introduced. The LGA node is
initialized with random parameters and aggregates both circuit
architecture and entanglement information through attention
operations with all nodes during the MHA process.

2) Feature Extraction: Feature extraction is performed uti-
lizing the previously transformed DAG. The extracted features
are as follows: node features, positional features, and edge
features. Node features encode the gate types, operating qubits,
and gate parameters. Positional features encode the execution
order of each gate and the positional information of qubits.
However, unlike these two features, edge features cannot
be encoded using only circuit architecture. As edge features
represent the continuous flow of gate operations on qubits, they
require quantum state information at that specific moment. To
obtain this, Pauli operators [23], commonly used to measure
quantum states, are utilized. For edges originating from single-
qubit gates, the states of that qubit are measured and encoded
using Pauli operators X, Y, Z. For edges originating from two-
qubit gates, the quantum correlations between the two-qubit
are measured and encoded using two-qubit Pauli operators XX,
YY, ZZ. These encoded edge features reflect the quantum
state and quantum correlations after each operation, thereby
providing the EQEM with error-propagation patterns across
the entire circuit. Finally, the three encoded features are
utilized as input vectors for the MHA process.

3) Entanglement-aware Weight Matrix: The entanglement-
aware weight matrix assigns weights according to the strength
of entanglement. It takes the DAG architectures as input and
automatically assigns weights using a predefined dictionary-
based on each gate or gate combinations. Gates that generate
strong entanglement (e.g., CX, CZ) are assigned values close
to the normalized maximum of 1, whereas gates that generate
weak entanglement (e.g., SWAP, RX) are assigned values near
the normalized minimum of 0. The resulting matrix is added as
a bias during self-attention in MHA, thereby assigning higher
attention weights to gates with strong entanglement. At such
gates, errors from one-qubit propagate to entangled qubits, and
stronger entanglement results in faster error-propagation and
greater vulnerability to noise. By assigning higher attention
weights to these gates, the entanglement-aware weight matrix
effectively provides the MHA with information about error
strength and propagation paths.

B. Entanglement-aware Quantum Error Mitigator

As shown in Fig. 1, proposed Entanglement-aware Quantum
Error Mitigator (EQEM) is trained to estimate expected results
without quantum errors utilizing features extracted from the
QCE. During the training process, noisy results containing
quantum errors from environmental factors during quantum
computing execution are obtained through circuit execution
and measurement. The encoded features from the QCE are
then input into the MHA, where information from all nodes
is aggregated to update the LGA node. During this process,
self-attention is performed utilizing the entanglement-aware

TABLE I
COMPARISON BETWEEN OUR PROPOSED METHOD AND EXISTING QEM

METHODS.

Metric Noisy ZNE [21] GTranQEM [9] Ours

MAE 0.1494 0.0733 0.0906 0.0657

weight matrix as bias. The updated LGA node is combined
with the noisy result and passed to a regression layer to
estimate the expected result. All parameters are optimized by
minimizing the MSE loss between the estimated result and the
ground truth (i.e., results without quantum errors). During the
inference process, noisy results are similarly obtained from
quantum circuit execution and measurement. These results
are processed through the trained EQEM, which outputs the
expected result with mitigated quantum errors.

IV. EVALUATION

To evaluate the effectiveness of our proposed method,
we conducted evaluations based on the following research
questions:

• RQ#1: How effectively does our proposed method miti-
gate quantum errors compared to existing QEM methods?

• RQ#2: How effectively does our proposed method mit-
igate quantum errors under various types of quantum
circuits and noise conditions?

A. Experimental Settings

1) Dataset Generation: For training and testing, we gen-
erated two types of quantum circuit datasets: (1) Random
circuit dataset: Composed of 6-qubit or 15-qubit circuits with
100 gates. Gates were randomly selected from Pauli-X, Pauli-
Y, Pauli-Z, Hadamard, RX, RY, RZ, CNOT, CZ, SWAP, and
RZZ, along with their operating qubits, order, and qubit indices
within each circuit. To ensure circuit complexity, we included
more than 30 layers; (2) Trotterized circuit dataset: Composed
of 6-qubit or 15-qubit circuits with 630 gates simulating quan-
tum device time evolution. Gates were arranged in a brick-
like staggered pattern to efficiently implement interactions
between close qubits [24]. To ensure circuit complexity, we
set the trotter steps to 21 and included 221 layers. For the
ground truth, we used the measurement results obtained by
measuring the composite circuit, which is the addition of the
inverse circuit to the original circuit. The dataset was split into
training, validation, and testing sets in an 8:1:1 ratio, with all
measurements conducted using 1,000 shots.

2) Noise Conditions: We employed three noise conditions
to evaluate the performance of our proposed method. (1)
Incoherent noise: noise condition including depolarization
error, (2) Mixed noise: noise condition combining Pauli-X
error, depolarization error, and readout error, and (3) IBM’s
Fake Providers (Providers) noise: noise condition simulated
on quantum devices provided by IBM, reflecting realistic noise
profiles of actual devices.
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TABLE II
PERFORMANCE EVALUATION OF OUR PROPOSED METHOD,

UNDER VARIOUS TYPES OF QUANTUM CIRCUITS AND NOISE CONDITIONS
USING MAE.

Dataset Noise Noisy Ours

6-qubit

Random
Incoherent 0.0296 0.0216

6-qubit

Trotter

Incoherent 0.1494 0.0657

Mixed 0.1585 0.0304

Providers 0.2784 0.1035

15-qubit

Random
Incoherent 0.0282 0.0196

15-qubit

Trotter
Incoherent 0.1494 0.0657

3) Comparing Methods: To validate the QEM performance
of our proposed method, we compared it with ZNE [21] and
GTranQEM [9]. ZNE is a widely employed classical method
in QEM, which estimates expected results without quantum
errors by artificially amplifying noise levels and extrapolating
the results. GTranQEM is a state-of-the-art machine learning-
based QEM method.

4) Evaluation Metric: To quantitatively evaluate the perfor-
mance of our proposed method, we employed Mean Absolute
Error (MAE). MAE is defined as the average of absolute differ-
ences between ground truth ŷi and expected result yi across all
circuits N . Lower MAE values indicate that expected results
are closer to the ground truth (i.e., expected results without
quantum errors).

MAE =
1

N

N∑
i=1

|ŷi − yi|

5) Implementation Details: All experiments utilized one
NVIDIA GeForce RTX 3090 GPU environment, Python
3.9.23, PyTorch 2.0.1, and Qiskit 1.4.3.

B. Evaluation Results

(RQ#1) Effectiveness of our proposed method compared
to existing QEM methods. To validate RQ#1, we selected
incoherent noise condition, commonly employed for QEM
performance evaluation, as the benchmark noise condition. We
compared the QEM performance of our proposed method with
ZNE [21] and GTranQEM [9] on 6-qubit trotterized circuits
using the MAE.

As shown in Table I, in the 6-qubit trotter circuit under
incoherent noise condition, the MAE of raw noisy result that
includes quantum errors was 0.1494. ZNE achieved a MAE

of 0.0733, while GTranQEM achieved a MAE of 0.0906. Our
proposed method achieved a MAE of 0.0657, outperforming
ZNE and GTranQEM by 0.0076 and 0.0249, respectively.

These results demonstrate that our proposed method enables
effective QEM by utilizing the entanglement-aware weight ma-
trix and quantum states (and correlations) in complex quantum
circuits where considering error-propagation is crucial.

(RQ#2) Effectiveness of our proposed method under
various types of quantum circuits and noise conditions. To
validate RQ#2, we evaluated the performance of our proposed
method under incoherent noise, mixed noise, and provider
noise settings with varying number of qubits using the MAE.

As shown in Table II, our proposed method maintained
significantly lower MAE than raw noisy results regardless
of noise conditions and circuit architectures, demonstrating
effective QEM performance. Our proposed method achieved
MAE reduction of 0.0080 in 6-qubit random circuit, under
incoherent noise condition. In 6-qubit trotter circuits, our
proposed method achieved MAE reduction of 0.0873, 0.1281,
and 0.1749, under incoherent, mixed and providers noise
conditions, respectively. Similarly, in much complex 15-qubit
random and trotter circuits, our proposed method achieved
MAE reduction of 0.0086 and 0.0837, under incoherent noise
condition. These results demonstrate that our proposed method
effectively mitigates errors regardless with quantum circuit
types and noise conditions.

V. CONCLUSION

In this paper, we propose a novel entanglement-aware QEM
method that effectively mitigates quantum errors by utilizing
both circuit architecture and entanglement information. Our
proposed method transforms a quantum circuit into a DAG and
encodes entanglement strengths as self-attention biases, while
representing quantum states and correlations as edge features.
Through these encodings, our proposed method effectively
captures error-propagation patterns that appear across the en-
tire circuit. Experimental results demonstrate that our proposed
method outperforms existing QEM methods in complex quan-
tum circuits and effectively mitigates errors under quantum
circuits that have various noise conditions and number of
qubits.

For future work, we aim to conduct evaluations on large-
scale complex circuits with more qubits and gates using actual
IBM quantum devices to further validate the practicality of our
proposed method in real quantum computing environments.
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