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Abstract—We introduce a new music source separation
model tailored for accurate vocal isolation. Unlike Transformer-
based approaches, which often fail to capture intermittently oc-
curring vocals, our model leverages Mamba2, a recent state
space model, to better capture long-range temporal dependen-
cies. To handle long input sequences efficiently, we combine a
band-splitting strategy with dual-path architecture. Experi-
ments show that our approach outperforms recent state-of-the-
art models, achieving a ¢cSDR of 11.03 dB—the best reported to
date—and achieving substantial improvements in uSDR. More-
over, the model exhibits stable and consistent performance
across varying input lengths and vocal occurrence patterns.
These results demonstrate the effectiveness of Mamba-based
models for high-resolution audio processing and open up new
directions for broader applications in audio research.

Keywords—Music source separation, vocal isolation, state
space model, Mamba2
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Music source separation aims to isolate individual sources
such as vocals, bass, drums, and guitar from a mixture,
supporting applications in remixing, music information
retrieval, and music education. Among audio separation tasks,
it is particularly challenging due to the high sampling rate
requirement (44.1 kHz), making advances in this area
particularly valuable for other high-resolution audio domains.
In this work, we focus on vocal separation, as vocals are the
most critical element for conveying emotion and meaning in
music, strongly influencing listeners’ perception. High-
quality vocal separation also enables the construction of
datasets for singing voice synthesis, where isolated vocals
from original tracks have been used to improve multilingual
and multi-singer systems [1, 2], and provides a stronger basis
for music transcription by enhancing melody extraction and
score generation [3-5].

INTRODUCTION

Recent years have seen rapid progress in music source
separation, as reflected in the music demixing challenge
(MDX) 2021 [6] and 2023 [7] challenges, which introduced
state-of-the-art models such as HT Demucs [8] and BS-
RoFormer [9]. Early approaches, including MMDenseNet
[10], LaSAFT [11], ResUNetDecouple+ [12], and HT
Demucs, were primarily U-Net based and operated on full
spectrograms, but they struggled to capture fine-grained
frequency details. Band-splitting methods such as BSRNN
[13] later demonstrated effectiveness at high sampling rates
by modeling inter-band dependencies, while BS-RoFormer
further advanced performance by replacing recurrent neural
networks (RNNs) with Transformers enhanced by rotary
embeddings. However, BS-RoFormer struggles when vocals
appear intermittently, since its global attention distributes
focus uniformly across the sequence, failing to emphasize
sparse but important vocal tokens. Prior work [14] suggests
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that selective attention to context-relevant tokens is more
effective than uniform allocation in long sequences,
motivating a reconsideration of model architectures for this
task.

State space models (SSMs) have recently emerged as pow-
erful alternatives for sequence modeling. Mamba [15] has
shown strong results across domains, including speech en-
hancement and speaker separation, with variants such as
SEMamba [16], SPMamba [17], and DPMamba [18] achiev-
ing state-of-the-art performance. Its successor, Mamba2 [19],
introduces structural improvements that enhance both effi-
ciency and long-sequence modeling. A notable feature of
Mamba?2 is selective state updates, which inject information
strongly at important moments while suppressing irrelevant
ones, making it particularly suitable for sparse-event se-
quences. Motivated by these insights, we propose BSMamba?,
a model that combines band-splitting with the Mamba2 archi-
tecture to process high-resolution audio effectively.
BSMamba2 addresses the limitations of Transformer-based
approaches by capturing intermittent vocals more reliably and
achieves robust, consistent separation performance across di-
verse conditions.

II. RELATED WORK

A. State Space Model

State space models are dynamic systems that represent
sequences in a latent state space. A standard SSM can be
written as a linear dynamical system:

h, = Ah,, +Bx,, y; = Ch,, €Y)

where h; denotes the hidden state at time, X, is the input, and
y: is the output. The matrices A, B, C are learnable parame-
ters that define the temporal dynamics of the system.

A representative approach is the hierarchical polynomial
projection operators (HiPPO) framework [20], which projects
input signals onto orthogonal polynomial function spaces (e.g.,
Laguerre or Legendre) and represents the sequence through
the resulting polynomial coefficients. This formulation ena-
bles efficient modeling of long-range dependencies.

Building on SSMs, Mamba introduced the concept of selec-
tive SSMs, where system parameters are generated adaptively
depending on the input sequence. Unlike conventional SSMs
that share fixed A, B across all timesteps, Mamba produces
input-dependent parameters A;, B;, C; allowing dynamic
adaptation:

h, =A/h, +B;x,, y,=C"h,. )

The matrices A, B; are discretized dynamically per timestep
based on the input:
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A, =e?4, B, = (AA)"'(e* —1AB, 3)

where A is an input-dependent parameter that governs selec-
tive state updates. This mechanism enables Mamba to propa-
gate or suppress information adaptively, depending on the im-
portance of the input signal at each timestep.

Mamba2 further improves efficiency and compatibility
with Transformer-based architecture. Its main structural inno-
vation simplifies the state transition matrix A from a diagonal
form (used in S4D [21] and Mamba) to a scalar multiple of the
identity:

A C))

where a is a learnable scalar. This simplification reduces pa-
rameter count, improves computational efficiency, and—most
importantly—makes Mamba2 structurally compatible with
Transformer ecosystems. As a result, Mamba2 can leverage
existing Transformer optimizations, hardware accelerations,
and software infrastructure while achieving 2-8x faster
runtime and competitive or superior performance across tasks.

B. Application of SSM

Recently, Mamba-based architectures have demonstrated
strong performance across a range of audio signal processing
tasks. One notable example is SEMamba, which applies
Mamba to speech enhancement. On the VoiceBank-
DEMAND dataset, SEMamba achieved superior performance
compared to Transformer- and Conformer-based models,
reaching a perceptual evaluation of speech quality (PESQ)
score of 3.69, the current state of the art. This improvement
was further facilitated by integrating perceptual contrast
stretching (PCS).

al,

Another representative model is SPMamba, designed for
speaker separation. It has achieved state-of-the-art results on
benchmark datasets such as WSJ0-2Mix, WHAM!, Libri2Mix,
and Echo2Mix. On Echo2Mix, SPMamba reported a signal-
to-distortion ratio improvement (SDRi) of 16.1 dB and a
scale-invariant signal-to-noise ratio improvement (SI-SNRi)
of 15.3 dB, substantially outperforming prior convolutional
neural network (CNN)-, RNN-, and transformer-based models.
Moreover, compared to recent models like TF-GridNet,
SPMamba reduces computational complexity and parameter
count by nearly half, highlighting its efficiency.

Finally, DPMamba extends Mamba with a dual-path
structure for speaker separation. By combining bidirectional
Mamba within the dual-path framework, it effectively
captures both local and global dependencies. On WSJ0-2Mix,
the largest variant (DPMamba-L) surpassed the previous
SOTA, Mossformer2, achieving a record SI-SNRi of 24.4 dB.
Importantly, this performance was obtained with fewer
parameters than competitive Transformer and CNN-based
models, underscoring its computational efficiency.

These successful applications provide strong motivation
for our approach, which replaces the RoFormer component in
BS-RoFormer with Mamba2.

III. THE PROPOSED METHOD

We address the problem of vocal source separation, where
the goal is to isolate the vocal signal from a given mixture of
music. The input mixture is first transformed into a complex
spectrogram X € C™*F using the short-time Fourier trans-
form (STFT), where T and F denote the time and frequency
axes, respectively. The model then estimates a vocal mask
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Fig. 1. BSMamba2 model architecture.

spectrogram M € CT*F. Source separation is performed by
applying the element-wise product of M and X, followed by
the inverse STFT to reconstruct the time-domain vocal signal.

Our proposed BSMamba? architecture follows the general
design of BS-RoFormer and consists of three key components:
(1) a band-splitting module, (2) a dual-path processing mod-
ule, and (3) a mask estimation module. Figure 1 illustrates the
overall structure of BSMamba2.

A. Band-Split Module

The band-split module divides the input complex spectro-
gram X € CT*F along the frequency axis into K sub-bands,
and applies a separate feature extraction process to each sub-
band. Each sub-band X, corresponds to a unique frequency
range Fy,, with all sub-bands together covering the full fre-
quency range, i.e., YX_, F,, = F.

Each sub-band X, € RT*Fk is mapped to a fixed-dimen-
sional feature representation Z;,, € R7*? through a multi-layer
perceptron (MLP), where D denotes the hidden dimension.
The MLP consists of RMSNorm [22] followed by a linear
layer and is applied independently to each sub-band. The re-
sulting sub-band features are then stacked along the band axis
to form the final feature tensor:

Z=1[Z; Z,;..; Zy] € RTXKXD,
B. Dual-Path Module

The dual-path module is designed to effectively model se-
quential dependencies along both the time and sub-band axes.
Given the input feature tensor Z € R7*¥*P it performs se-
quential processing in two directions. Bidirectional Mamba2
blocks are applied along each axis to enhance long-range de-
pendency modeling.

Each bidirectional Mamba2 block consists of a forward
and a backward Mamba?2 block, with residual connections ap-
plied to their outputs, followed by a linear layer that merges
the two directions and reduces dimensionality. Initially, Z is
treated as independent sequences along the time axis T for
each sub-band and processed through the bidirectional
Mamba2 block. This step captures temporal dependencies
within each sub-band. Subsequently, the features are rear-
ranged along the band axis K and passed through another bi-
directional Mamba2 block to model inter-band dependencies
at each time frame. The dual-path processing is repeated L
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allowing the model to progressively capture refined time—fre-
quency interactions.

C. Mask Estimation Module

The mask estimation module converts the sequential fea-
tures Q obtained from the dual-path module into a time—fre-
quency mask. The input features Q € RT*K*D are first split
along the sub-band axis K, and each sub-band Q; € RT*? is
processed independently.

Each sub-band feature Q, is passed through an MLP con-
sisting of RMSNorm for input normalization, two linear lay-
ers, an intermediate Tanh activation, and a final gated linear
unit (GLU). The MLP outputs a mask M, € RT*fx corre-
sponding to the frequency range Fj of that sub-band. The
sub-band masks are then concatenated along the frequency
axis to form the final mask:

M= [Ml; Mz; "':MK] € RTXF. (6)

The resulting mask is applied element-wise to the input
complex spectrogram X to produce the estimated vocal spec-
trogram:

S=XOM @)

Finally, the inverse short-time Fourier transform (ISTFT)
is applied to S to reconstruct the time-domain vocal signal §.

D. Loss Function

The model predicts the vocal source §, which is compared
with the ground-truth vocal source s to compute the loss. We
adopt the same loss formulation as BS-RoFormer, combining
both time-domain and frequency-domain information. The
total loss is defined as:

L= Aime - 18— sll; + Z”swrf(ﬁ) ~STFT; ||, (®
feF

The first term is the L1 loss in the time domain, while the
second is a multi-resolution STFT loss that aggregates the L1
distances between complex spectrograms at multiple resolu-
tions. For the multi-resolution STFT loss, we use hop size 147
and window sizes of [4096, 2048, 1024, 512, 256]. The
weighting factor for the time-domain loss is set as Ay = 10.

IV. RELATED WORKS

A. Dataset

We conduct our experiments on the MUSDB18HQ dataset
[23], a publicly available high-quality music source separa-
tion dataset sampled at 44.1 kHz in stereo. Each track con-
tains isolated stems for vocals, drums, bass, and other instru-
ments. The dataset consists of 150 tracks in total. Following
the commonly used split, we use 86 tracks for training, 14
tracks for validation, and 50 tracks for testing.

B. Metrics

We evaluate model performance using the signal-to-distor-
tion ratio (SDR), a widely adopted metric in music source
separation. SDR measures the degree of distortion between
the predicted and ground-truth sources, with higher values in-
dicating better separation quality. In this study, we report two
types of SDR: chunk-level SDR (cSDR) and utterance-level
SDR (uSDR). For ¢SDR, each test track is divided into 1-
second audio chunks, and SDR is computed for each chunk.
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TABLE L. Hyperparameter settings for BS-RoFormer and
BSMamba2.

Hyperparameters BS-RoFormer = BSMamba2
Hidden dimension D 384 256
Dual-path modules L 6 6

Number of sub-bands 62 62
Learning rate 5x107* 5x107*
Precision floatl6 bfloatl6
Total parameters 72.2M 48.1M
Number of GPUs 4 2

Batch size per GPU 4 5

Gradient accum. steps 4 6

Effective batch size 64 60

TABLEIl.  Performance comparison of vocal source
separation. The best performance is bold.
Model uSDR cSDR
ResUNetDecouple - 8.98
Hybrid Demucs - 8.13
BSRNN 9.73 10.01
SIMO stereo BSRNN [24]  10.33 9.79
BS-RoFormer(L=6, TC) - 10.68
SCNet-large [25] - 10.86
BS-RoFormer (unofticial) 10.29 10.47
BSMamba2 (ours) 10.70 11.03

TABLE III.  Comparison of uSDR performance across
different input lengths.

Model 1-2s 2-4s 4-8s

BS-RoFormer (unofficial)  8.47 10.29 12.14

BSMamba2 (ours) 9.62 11.28 12.39

The median SDR is taken for each track, and the final score
is obtained by computing the median across all tracks. For
uSDR, SDR is calculated over the entire track, and the mean
across all tracks is reported as the overall model performance.

C. Implementation Details

For a fair comparison, we re-implemented both the pro-
posed BSMamba?2 model and the baseline BS-RoFormer un-
der identical training environments and dataset settings,
keeping the architecture and hyperparameters of BS-
RoFormer the same as in the original work. All input audio
was segmented into 8-second clips with a sampling rate of
44.1 kHz, and complex spectrograms were computed using
STFT with a window size of 2048 and hop size of 441. Mix-
tures were created by randomly combining the four sources
(vocals, drums, bass, and other), and various data augmenta-
tion techniques were applied to enhance diversity.

Table I summarizes the hyperparameters used for both BS-
RoFormer and BSMamba2. Training was conducted on
NVIDIA A100 80GB GPUs. BS-RoFormer used four GPUs
with a per-GPU batch size of 4 and gradient accumulation of



TABLE IV. Vocal separation performance of BS-RoFormer and BSMamba2 across input lengths (1-16 Seconds). The best
performance is bold.

1s 2s 4s 8s 12s 16s
Model uSDR ¢SDR | uSDR ¢SDR | uSDR c¢SDR | uSDR ¢SDR | uSDR ¢SDR | uSDR ¢SDR
BS-RoFormer (unofficial) 8.09 872 | 937 9.85 | 10.00 10.25 | 1029 1047 | 9.47 9.70 | 897  9.26
BSMamba2 (ours) 9.27 10.12 | 10.00 10.65 | 10.50 10.89 | 10.70 11.03 | 10.78 11.07 | 10.73 11.04
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Fig. 2. Comparison of mel spectrograms generated by different
models.

4, yielding an effective batch size of 64, closely matching the
original setup. BSMamba?2 used two GPUs with a per-GPU
batch size of 5 and gradient accumulation of 6, resulting in an
effective batch size of 60. During evaluation, model outputs
were generated by sequentially concatenating non-overlap-
ping 8-second segments to reconstruct the full audio.

V. RESULTS

A. Performance Comparison with Baseline Models

Table II presents the vocal separation performance of the
proposed BSMamba2 compared with various recent source
separation models. We report both uSDR and ¢SDR, with
BSMamba? achieving the best performance across both met-
rics.

Notably, BSMamba?2 attains the highest performance
among existing band-split models, surpassing the previous
official state-of-the-art ¢cSDR achieved by SCNet-large.
Compared to the BS-RoFormer (unofficial) trained under the
same conditions, BSMamba2 improves uSDR by +0.41 dB
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and cSDR by +0.56 dB. This demonstrates that simply replac-
ing the RoFormer blocks with Mamba2 in the BS-RoFormer
architecture leads to a clear enhancement in separation qual-
ity.

Furthermore, while other band-split models generally ben-
efit from increased network depth, BSMamba2 improves per-
formance without increasing the depth beyond that of BS-
RoFormer. These results indicate that BSMamba?2 offers a su-
perior alternative in terms of both performance and scalabil-
ity, even with a relatively simple structural modification.

B. Separation Performance Analysis by Vocal Onset Time

Figure 2 shows the mel-spectrogram results for a segment
of PR-Happy Daze from the MUSDBI18 test set, comparing
the ground truth, BSMamba2, BS-RoFormer, and 1-second
chunk inference of BS-RoFormer in scenarios where vocals
occur intermittently. Both BSMamba2 and BS-RoFormer
used 8-second input chunks for inference, while the 1-second
inference was obtained by sequentially concatenating eight
output chunks. The 8-second inference of BS-RoFormer
failed to clearly separate the vocal regions, whereas the 1-
second inference demonstrated relatively improved separa-
tion. This suggests that in longer chunks, sparse vocal occur-
rences cause attention-based modules to insufficiently focus
on vocal information, while shorter chunks provide more
continuous vocal presence, mitigating this issue. In contrast,
BSMamba? produced clearer separation even under the same
conditions, indicating that Mamba2 blocks capture intermit-
tent vocals more effectively than attention-based modules.

Table III reports the separation uSDR performance of BS-
RoFormer and BSMamba2 with respect to vocal onset dura-
tion. The performance gap was largest (1.15 dB) for short vo-
cal segments of 1-2 seconds, while the difference decreased
to 0.25 dB for longer segments of 4—8 seconds. This indicates
that BS-RoFormer’s performance deteriorates substantially
when vocals appear intermittently, whereas BSMamba2
maintains more consistent separation quality.

C. Performance Comparison Across Input Durations

Table I'V presents the vocal separation performance of BS-
RoFormer and BSMamba2 when varying the input length
from 1 to 16 seconds. Both models were trained with 8-sec-
ond input chunks, but the experiments evaluated not only
shorter but also longer input durations. Around the 8-second
training length, the performance gap between the two models
was relatively small. However, as the input became shorter or
longer, the difference widened. For longer inputs, BS-
RoFormer’s performance dropped sharply, whereas
BSMamba?2 effectively handled extended temporal contexts,
even exhibiting a slight performance advantage.

For shorter inputs, the performance gap arises because
BSMamba?2 can accurately capture vocal characteristics with
relatively limited information. This suggests that training on



longer sequences could further enhance performance. In con-
trast, BS-RoFormer may appear effective for short segments
due to fewer intermittent vocals, but the lack of sufficient
contextual information can hinder understanding of the over-
all musical structure. Therefore, caution is required when in-
terpreting results for short input lengths, as they can inadvert-
ently reduce overall performance.

VI. CONCLUSION

In this paper, we proposed BSMamba?2, a novel model for
accurately extracting vocal sources in music source separa-
tion. The model replaces the Transformer-based RoFormer
modules in the existing BS-RoFormer architecture with the
recently proposed Mamba2 modules, effectively addressing
the limitations of previous models in separating intermittent
vocal sources. As a result, BSMamba2 achieves stable and
superior separation performance even when vocals occur
sparsely. Experimental results demonstrate that BSMamba2
outperforms various recent state-of-the-art models, achieving
a ¢SDR of 11.03 dB, surpassing the previous best perfor-
mance, and showing substantial improvements in uSDR as
well. Further analysis empirically confirms that BSMamba2
successfully mitigates the performance degradation of BS-
RoFormer in sparse vocal scenarios.
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