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Abstract—We introduce a new music source separation 
model tailored for accurate vocal isolation. Unlike Transformer-
based approaches, which often fail to capture intermittently oc-
curring vocals, our model leverages Mamba2, a recent state 
space model, to better capture long-range temporal dependen-
cies. To handle long input sequences efficiently, we combine a 
band-splitting strategy with dual-path architecture. Experi-
ments show that our approach outperforms recent state-of-the-
art models, achieving a cSDR of 11.03 dB—the best reported to 
date—and achieving substantial improvements in uSDR. More-
over, the model exhibits stable and consistent performance 
across varying input lengths and vocal occurrence patterns. 
These results demonstrate the effectiveness of Mamba-based 
models for high-resolution audio processing and open up new 
directions for broader applications in audio research. 

Keywords—Music source separation, vocal isolation, state 
space model, Mamba2 

I. INTRODUCTION 
Music source separation aims to isolate individual sources 

such as vocals, bass, drums, and guitar from a mixture, 
supporting applications in remixing, music information 
retrieval, and music education. Among audio separation tasks, 
it is particularly challenging due to the high sampling rate 
requirement (44.1 kHz), making advances in this area 
particularly valuable for other high-resolution audio domains. 
In this work, we focus on vocal separation, as vocals are the 
most critical element for conveying emotion and meaning in 
music, strongly influencing listeners’ perception. High-
quality vocal separation also enables the construction of 
datasets for singing voice synthesis, where isolated vocals 
from original tracks have been used to improve multilingual 
and multi-singer systems [1, 2], and provides a stronger basis 
for music transcription by enhancing melody extraction and 
score generation [3-5]. 

Recent years have seen rapid progress in music source 
separation, as reflected in the music demixing challenge 
(MDX) 2021 [6] and 2023 [7] challenges, which introduced 
state-of-the-art models such as HT Demucs [8] and BS-
RoFormer [9]. Early approaches, including MMDenseNet 
[10], LaSAFT [11], ResUNetDecouple+ [12], and HT 
Demucs, were primarily U-Net based and operated on full 
spectrograms, but they struggled to capture fine-grained 
frequency details. Band-splitting methods such as BSRNN 
[13] later demonstrated effectiveness at high sampling rates 
by modeling inter-band dependencies, while BS-RoFormer 
further advanced performance by replacing recurrent neural 
networks (RNNs) with Transformers enhanced by rotary 
embeddings. However, BS-RoFormer struggles when vocals 
appear intermittently, since its global attention distributes 
focus uniformly across the sequence, failing to emphasize 
sparse but important vocal tokens. Prior work [14] suggests 

that selective attention to context-relevant tokens is more 
effective than uniform allocation in long sequences, 
motivating a reconsideration of model architectures for this 
task. 

State space models (SSMs) have recently emerged as pow-
erful alternatives for sequence modeling. Mamba [15] has 
shown strong results across domains, including speech en-
hancement and speaker separation, with variants such as 
SEMamba [16], SPMamba [17], and DPMamba [18] achiev-
ing state-of-the-art performance. Its successor, Mamba2 [19], 
introduces structural improvements that enhance both effi-
ciency and long-sequence modeling. A notable feature of 
Mamba2 is selective state updates, which inject information 
strongly at important moments while suppressing irrelevant 
ones, making it particularly suitable for sparse-event se-
quences. Motivated by these insights, we propose BSMamba2, 
a model that combines band-splitting with the Mamba2 archi-
tecture to process high-resolution audio effectively. 
BSMamba2 addresses the limitations of Transformer-based 
approaches by capturing intermittent vocals more reliably and 
achieves robust, consistent separation performance across di-
verse conditions. 

II. RELATED WORK 

A. State Space Model 
State space models are dynamic systems that represent 

sequences in a latent state space. A standard SSM can be 
written as a linear dynamical system: 

 =  + ,    = , 1 
where  denotes the hidden state at time,  is the input, and  is the output. The matrices ,  ,   are learnable parame-
ters that define the temporal dynamics of the system. 

A representative approach is the hierarchical polynomial 
projection operators (HiPPO) framework [20], which projects 
input signals onto orthogonal polynomial function spaces (e.g., 
Laguerre or Legendre) and represents the sequence through 
the resulting polynomial coefficients. This formulation ena-
bles efficient modeling of long-range dependencies. 

Building on SSMs, Mamba introduced the concept of selec-
tive SSMs, where system parameters are generated adaptively 
depending on the input sequence. Unlike conventional SSMs 
that share fixed ,  across all timesteps, Mamba produces 
input-dependent parameters  ,  ,   allowing dynamic 
adaptation: 

 =  + ,  = .              2 

The matrices ,  are discretized dynamically per timestep 
based on the input: 
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 = ,  =   ,         3 

where Δ is an input-dependent parameter that governs selec-
tive state updates. This mechanism enables Mamba to propa-
gate or suppress information adaptively, depending on the im-
portance of the input signal at each timestep. 

Mamba2 further improves efficiency and compatibility 
with Transformer-based architecture. Its main structural inno-
vation simplifies the state transition matrix  from a diagonal 
form (used in S4D [21] and Mamba) to a scalar multiple of the 
identity: 

  =  , 4 

where  is a learnable scalar. This simplification reduces pa-
rameter count, improves computational efficiency, and—most 
importantly—makes Mamba2 structurally compatible with 
Transformer ecosystems. As a result, Mamba2 can leverage 
existing Transformer optimizations, hardware accelerations, 
and software infrastructure while achieving 2–8× faster 
runtime and competitive or superior performance across tasks. 

B. Application of SSM 
Recently, Mamba-based architectures have demonstrated 

strong performance across a range of audio signal processing 
tasks. One notable example is SEMamba, which applies 
Mamba to speech enhancement. On the VoiceBank-
DEMAND dataset, SEMamba achieved superior performance 
compared to Transformer- and Conformer-based models, 
reaching a perceptual evaluation of speech quality (PESQ) 
score of 3.69, the current state of the art. This improvement 
was further facilitated by integrating perceptual contrast 
stretching (PCS). 

Another representative model is SPMamba, designed for 
speaker separation. It has achieved state-of-the-art results on 
benchmark datasets such as WSJ0-2Mix, WHAM!, Libri2Mix, 
and Echo2Mix. On Echo2Mix, SPMamba reported a signal-
to-distortion ratio improvement (SDRi) of 16.1 dB and a 
scale-invariant signal-to-noise ratio improvement (SI-SNRi) 
of 15.3 dB, substantially outperforming prior convolutional 
neural network (CNN)-, RNN-, and transformer-based models. 
Moreover, compared to recent models like TF-GridNet, 
SPMamba reduces computational complexity and parameter 
count by nearly half, highlighting its efficiency. 

Finally, DPMamba extends Mamba with a dual-path 
structure for speaker separation. By combining bidirectional 
Mamba within the dual-path framework, it effectively 
captures both local and global dependencies. On WSJ0-2Mix, 
the largest variant (DPMamba-L) surpassed the previous 
SOTA, Mossformer2, achieving a record SI-SNRi of 24.4 dB. 
Importantly, this performance was obtained with fewer 
parameters than competitive Transformer and CNN-based 
models, underscoring its computational efficiency. 

These successful applications provide strong motivation 
for our approach, which replaces the RoFormer component in 
BS-RoFormer with Mamba2. 

III. THE PROPOSED METHOD 
We address the problem of vocal source separation, where 

the goal is to isolate the vocal signal from a given mixture of 
music. The input mixture is first transformed into a complex 
spectrogram  ∈ ℂ  using the short-time Fourier trans-
form (STFT), where  and  denote the time and frequency 
axes, respectively. The model then estimates a vocal mask 

spectrogram  ∈ ℂ . Source separation is performed by 
applying the element-wise product of  and , followed by 
the inverse STFT to reconstruct the time-domain vocal signal. 

Our proposed BSMamba2 architecture follows the general 
design of BS-RoFormer and consists of three key components: 
(1) a band-splitting module, (2) a dual-path processing mod-
ule, and (3) a mask estimation module. Figure 1 illustrates the 
overall structure of BSMamba2. 

A. Band-Split Module 
The band-split module divides the input complex spectro-

gram  ∈ ℂ  along the frequency axis into   sub-bands, 
and applies a separate feature extraction process to each sub-
band. Each sub-band  corresponds to a unique frequency 
range , with all sub-bands together covering the full fre-
quency range, i.e., ∑  = . 

Each sub-band  ∈ ℝ is mapped to a fixed-dimen-
sional feature representation  ∈ ℝ through a multi-layer 
perceptron (MLP), where   denotes the hidden dimension. 
The MLP consists of RMSNorm [22] followed by a linear 
layer and is applied independently to each sub-band. The re-
sulting sub-band features are then stacked along the band axis 
to form the final feature tensor: 

 = ; ; … ;  ∈ ℝ. 5 
B. Dual-Path Module 

The dual-path module is designed to effectively model se-
quential dependencies along both the time and sub-band axes. 
Given the input feature tensor  ∈ ℝ, it performs se-
quential processing in two directions. Bidirectional Mamba2 
blocks are applied along each axis to enhance long-range de-
pendency modeling. 

Each bidirectional Mamba2 block consists of a forward 
and a backward Mamba2 block, with residual connections ap-
plied to their outputs, followed by a linear layer that merges 
the two directions and reduces dimensionality. Initially,  is 
treated as independent sequences along the time axis  for 
each sub-band and processed through the bidirectional 
Mamba2 block. This step captures temporal dependencies 
within each sub-band. Subsequently, the features are rear-
ranged along the band axis  and passed through another bi-
directional Mamba2 block to model inter-band dependencies 
at each time frame. The dual-path processing is repeated  

 

Fig. 1. BSMamba2 model architecture. 
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allowing the model to progressively capture refined time–fre-
quency interactions. 

C. Mask Estimation Module 
The mask estimation module converts the sequential fea-

tures  obtained from the dual-path module into a time–fre-
quency mask. The input features  ∈ ℝ are first split 
along the sub-band axis , and each sub-band  ∈ ℝ is 
processed independently. 

Each sub-band feature  is passed through an MLP con-
sisting of RMSNorm for input normalization, two linear lay-
ers, an intermediate Tanh activation, and a final gated linear 
unit (GLU). The MLP outputs a mask  ∈ ℝ  corre-
sponding to the frequency range  of that sub-band. The 
sub-band masks are then concatenated along the frequency 
axis to form the final mask: 

 = ; ; … ;  ∈ ℝ. 6 
The resulting mask is applied element-wise to the input 

complex spectrogram  to produce the estimated vocal spec-
trogram: 

 =  ⊙  7 
 Finally, the inverse short-time Fourier transform (ISTFT) 

is applied to  to reconstruct the time-domain vocal signal . 

D. Loss Function 
The model predicts the vocal source , which is compared 

with the ground-truth vocal source  to compute the loss. We 
adopt the same loss formulation as BS-RoFormer, combining 
both time-domain and frequency-domain information. The 
total loss is defined as: 

ℒ = time ⋅ ‖  ‖ +   ∈ℱ
8 

The first term is the L1 loss in the time domain, while the 
second is a multi-resolution STFT loss that aggregates the L1 
distances between complex spectrograms at multiple resolu-
tions. For the multi-resolution STFT loss, we use hop size 147 
and window sizes of [4096, 2048, 1024, 512, 256]. The 
weighting factor for the time-domain loss is set as time = 10. 

IV. RELATED WORKS 

A. Dataset 
We conduct our experiments on the MUSDB18HQ dataset 

[23], a publicly available high-quality music source separa-
tion dataset sampled at 44.1 kHz in stereo. Each track con-
tains isolated stems for vocals, drums, bass, and other instru-
ments. The dataset consists of 150 tracks in total. Following 
the commonly used split, we use 86 tracks for training, 14 
tracks for validation, and 50 tracks for testing. 

B. Metrics 
We evaluate model performance using the signal-to-distor-

tion ratio (SDR), a widely adopted metric in music source 
separation. SDR measures the degree of distortion between 
the predicted and ground-truth sources, with higher values in-
dicating better separation quality. In this study, we report two 
types of SDR: chunk-level SDR (cSDR) and utterance-level  
SDR (uSDR). For cSDR, each test track is divided into 1-
second audio chunks, and SDR is computed for each chunk. 

The median SDR is taken for each track, and the final score 
is obtained by computing the median across all tracks. For 
uSDR, SDR is calculated over the entire track, and the mean 
across all tracks is reported as the overall model performance. 

C. Implementation Details 
For a fair comparison, we re-implemented both the pro-

posed BSMamba2 model and the baseline BS-RoFormer un-
der identical training environments and dataset settings, 
keeping the architecture and hyperparameters of BS-
RoFormer the same as in the original work. All input audio 
was segmented into 8-second clips with a sampling rate of 
44.1 kHz, and complex spectrograms were computed using 
STFT with a window size of 2048 and hop size of 441. Mix-
tures were created by randomly combining the four sources 
(vocals, drums, bass, and other), and various data augmenta-
tion techniques were applied to enhance diversity.  

Table I summarizes the hyperparameters used for both BS-
RoFormer and BSMamba2. Training was conducted on 
NVIDIA A100 80GB GPUs. BS-RoFormer used four GPUs 
with a per-GPU batch size of 4 and gradient accumulation of 

TABLE I.  Hyperparameter settings for BS-RoFormer and 
BSMamba2. 

Hyperparameters  BS-RoFormer BSMamba2 
Hidden dimension D 384 256 
Dual-path modules L 6 6 
Number of sub-bands 62 62 
Learning rate 5  10 5  10 
Precision float16 bfloat16 
Total parameters 72.2M 48.1M 
Number of GPUs 4 2 
Batch size per GPU 4 5 
Gradient accum. steps 4 6 
Effective batch size 64 60 

 

TABLE II.  Performance comparison of vocal source 
separation. The best performance is bold. 

Model uSDR cSDR 

ResUNetDecouple – 8.98 

Hybrid Demucs – 8.13 

BSRNN 9.73 10.01 

SIMO stereo BSRNN [24] 10.33 9.79 

BS-RoFormer(L=6, TC) – 10.68 

SCNet-large [25] – 10.86 

BS-RoFormer (unofficial) 10.29 10.47 
BSMamba2 (ours) 10.70 11.03 

 

TABLE III.  Comparison of uSDR performance across 
different input lengths. 

Model 1–2 s 2–4 s 4–8 s 
BS-RoFormer (unofficial) 8.47 10.29 12.14 
BSMamba2 (ours) 9.62 11.28 12.39 
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4, yielding an effective batch size of 64, closely matching the 
original setup. BSMamba2 used two GPUs with a per-GPU 
batch size of 5 and gradient accumulation of 6, resulting in an 
effective batch size of 60. During evaluation, model outputs 
were generated by sequentially concatenating non-overlap-
ping 8-second segments to reconstruct the full audio.  

V. RESULTS 

A. Performance Comparison with Baseline Models 
Table II presents the vocal separation performance of the 

proposed BSMamba2 compared with various recent source 
separation models. We report both uSDR and cSDR, with 
BSMamba2 achieving the best performance across both met-
rics. 

Notably, BSMamba2 attains the highest performance 
among existing band-split models, surpassing the previous 
official state-of-the-art cSDR achieved by SCNet-large. 
Compared to the BS-RoFormer (unofficial) trained under the 
same conditions, BSMamba2 improves uSDR by +0.41 dB 

and cSDR by +0.56 dB. This demonstrates that simply replac-
ing the RoFormer blocks with Mamba2 in the BS-RoFormer 
architecture leads to a clear enhancement in separation qual-
ity.  

Furthermore, while other band-split models generally ben-
efit from increased network depth, BSMamba2 improves per-
formance without increasing the depth beyond that of BS-
RoFormer. These results indicate that BSMamba2 offers a su-
perior alternative in terms of both performance and scalabil-
ity, even with a relatively simple structural modification. 

B. Separation Performance Analysis by Vocal Onset Time 
Figure 2 shows the mel-spectrogram results for a segment 

of PR-Happy Daze from the MUSDB18 test set, comparing 
the ground truth, BSMamba2, BS-RoFormer, and 1-second 
chunk inference of BS-RoFormer in scenarios where vocals 
occur intermittently. Both BSMamba2 and BS-RoFormer 
used 8-second input chunks for inference, while the 1-second 
inference was obtained by sequentially concatenating eight 
output chunks. The 8-second inference of BS-RoFormer 
failed to clearly separate the vocal regions, whereas the 1-
second inference demonstrated relatively improved separa-
tion. This suggests that in longer chunks, sparse vocal occur-
rences cause attention-based modules to insufficiently focus 
on vocal information, while shorter chunks provide more 
continuous vocal presence, mitigating this issue. In contrast, 
BSMamba2 produced clearer separation even under the same 
conditions, indicating that Mamba2 blocks capture intermit-
tent vocals more effectively than attention-based modules. 

Table III reports the separation uSDR performance of BS-
RoFormer and BSMamba2 with respect to vocal onset dura-
tion. The performance gap was largest (1.15 dB) for short vo-
cal segments of 1–2 seconds, while the difference decreased 
to 0.25 dB for longer segments of 4–8 seconds. This indicates 
that BS-RoFormer’s performance deteriorates substantially 
when vocals appear intermittently, whereas BSMamba2 
maintains more consistent separation quality. 

C. Performance Comparison Across Input Durations 
Table IV presents the vocal separation performance of BS-

RoFormer and BSMamba2 when varying the input length 
from 1 to 16 seconds. Both models were trained with 8-sec-
ond input chunks, but the experiments evaluated not only 
shorter but also longer input durations. Around the 8-second 
training length, the performance gap between the two models 
was relatively small. However, as the input became shorter or 
longer, the difference widened. For longer inputs, BS-
RoFormer’s performance dropped sharply, whereas 
BSMamba2 effectively handled extended temporal contexts, 
even exhibiting a slight performance advantage. 

For shorter inputs, the performance gap arises because 
BSMamba2 can accurately capture vocal characteristics with 
relatively limited information. This suggests that training on 

 
Fig. 2. Comparison of mel spectrograms generated by different 
models. 

TABLE IV.  Vocal separation performance of BS-RoFormer and BSMamba2 across input lengths (1–16 Seconds). The best 
performance is bold.  

Model 
1 s 2 s 4 s 8 s 12 s 16 s 

uSDR cSDR uSDR cSDR uSDR cSDR uSDR cSDR uSDR cSDR uSDR cSDR 
BS-RoFormer (unofficial) 8.09 8.72 9.37 9.85 10.00 10.25 10.29 10.47 9.47 9.70 8.97 9.26 
BSMamba2 (ours) 9.27 10.12 10.00 10.65 10.50 10.89 10.70 11.03 10.78 11.07 10.73 11.04 
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longer sequences could further enhance performance. In con-
trast, BS-RoFormer may appear effective for short segments 
due to fewer intermittent vocals, but the lack of sufficient 
contextual information can hinder understanding of the over-
all musical structure. Therefore, caution is required when in-
terpreting results for short input lengths, as they can inadvert-
ently reduce overall performance. 

VI. CONCLUSION 
In this paper, we proposed BSMamba2, a novel model for 

accurately extracting vocal sources in music source separa-
tion. The model replaces the Transformer-based RoFormer 
modules in the existing BS-RoFormer architecture with the 
recently proposed Mamba2 modules, effectively addressing 
the limitations of previous models in separating intermittent 
vocal sources. As a result, BSMamba2 achieves stable and 
superior separation performance even when vocals occur 
sparsely. Experimental results demonstrate that BSMamba2 
outperforms various recent state-of-the-art models, achieving 
a cSDR of 11.03 dB, surpassing the previous best perfor-
mance, and showing substantial improvements in uSDR as 
well. Further analysis empirically confirms that BSMamba2 
successfully mitigates the performance degradation of BS-
RoFormer in sparse vocal scenarios. 
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