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Abstract—Conventional reinforcement learning (RL) algorithms
faces several problems such as danger and cost for collecting
data from the environment, degrading its potential for real-
world application. As an alternative, offline RL, which aims to
learn policy from the dataset, is proposed to remove the danger
from real-time interaction with the environment. Among them,
this paper proposes diffusion-based offline reinforcement learning
algorithm which adopts diffusion model to better extract useful
policy from the dataset . Experiment results shows the potential
of the diffusion-based RL, in terms of the maximized reward.

Index Terms—Generative AI, Offline Reinforcement Learning,
Trajectory Planning

I. INTRODUCTION

Reinforcement learning (RL) has been an useful solution
for decision-making task, such as autonomous driving, drone
manipulation and so on [1], [2]. However in many cases, trial-
and-error based learning, which is the essential part of the
algorithm, can pose a risk during the training, degrading the
algorithm’s potential and applicability [3]. Other modification
aims to enhance the safety of the RL by encompassing safety-
related constraints into the reward settings [4]. However, as
long as this safety constraints are hand-crafted, the adaptability
of RL still cannot be enhanced, because it requires continuous
manual adaptation.

Offline RL is an alternative method for solving the problem
of RL originating from trial-and-error [5]. Instead of directly
interacting with the environment, offline RL gathers data from
experts and aims to learn the policy from that dataset, which
successfully removes the risk from real-time interaction with
the environment. However, addressing out-of-distribution data
is still a challenging task for offline RL [6].

Recent advances in generative artificial intelligence (GAI)
models have opened a new possibility of offline RL, which
is GAI-based offline RL [7]. By utilizing the ability of GAI
to approximate an arbitrary probability function, GAI-based
offline RL aims to extract the probability function of the expert
dataset. Specifically, diffusion model is applied to the fields
of trajectory planning as described in Fig. 1 [8]. These GAI
models are reported to have ability to generalize in unknown
data, compensating the offline RL’s deficit.
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Fig. 1: An schematic illustration of diffusion-based trajectory
planner. Firstly, initial trajectory data τ0 is transformed into
noisy data τT , by the forward process. After that, the model
learns to denoise τT using backward process.

Motivated by this, this paper examines the performance of the
GAI-based trajectory planning algorithms with other baselines.
In addition, this paper analyzes the property of these algorithms.

II. PRELIMINARIES

A. Diffusion Models

A diffusion model is proposed to approximate dataset’s
probability distribution, enabling sampling from it. Diffusion
model first gradually adds noise to original state x0, yielding
noisy state xT . After that, the model learns to reconstruct the
original state from the noisy state by approximating ϵt, which
is the noise at timestep t. Here, the former is called as forward
process and the latter is called as backward process.

To guide diffusion model to sample with specific condi-
tion such as label, several guidance methods are developed.
Classifier-guidance is the first algorithm proposed for guiding
diffusion model [9]. Classifier-guidance independently trains
another module that predicts the label of the noisy data.
After that, it provides the gradient ∇ log p(y|xt) to the dif-
fusion model so that it can sample from the distribution
p(x0|y) ≃ p(x0)p(y|x0).

B. Related Work

Before the advent of learning-based control, decision-making
in dynamic systems relied on methods such as Propor-
tional–Integral–Derivative (PID), Linear Quadratic Regulator
(LQR), H∞ robust control, Model Predictive Control (MPC),
and Sliding Mode Control (SMC) [10]. While these approaches
offered advantages in simplicity, optimality, robustness, or
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constraint handling, they shared key drawbacks: strong model
dependence, poor adaptability to nonlinear or uncertain dynam-
ics, and high computational or tuning burdens. These limitations
motivated the shift toward learning-based approaches [11].

Among the learning-based methods, reinforcement learning
(RL) addresses aforementioned issues by enabling agents to
learn policies through environment interaction without explicit
mathematical calculation [12]. To reduce online interaction
demands, offline RL leverages static datasets, improving safety
and cost-effectiveness, though generalization beyond dataset
distributions remains challenging [13].

To further address data inefficiency and distributional shift,
generative model-based RL has emerged. Diffusion approaches
such as Diffuser generate action trajectories through denoising,
enabling multimodal behavior modeling but with heavy com-
putational cost [14]. These GAI-based RL models reframe RL
as sequence modeling, capturing long-term dependencies and
reusing offline datasets effectively [15].

III. ALGORITHM DETAILS

A. Problem Formulation

Optimal control problem can be modeled as inference prob-
lem over MDP defined as tuple ⟨S,A,R, γ, P ⟩. Here, each
component in the tuple denotes the set of states, set of actions,
reward function, discount factor, and transition probability.
Main objective of the optimal control problem is to find π(a|s)
such that maximizes cumulative reward of the agent, i.e.,
E[
∑

r(st, at)]. To explicitly calculate the probability of the
trajectories with high reward, let Ot a binary random variable
that denotes the optimality of the action at in the situation st.
In addition, define the conditional probability of Ot as follows,

p(Ot = 1|st, at) = exp(r(st, at)). (1)

Above equation implies that the higher the reward is, higher
the probability of that trajectory τ . Then, the goal of the control
is to sample the trajectory that has highest p(τ |O). Using
similar defactorization with classifier-guidance, log p(τ |O) can
be stated as log p(τ |O) ≃ log p(τ) + log p(O|τ). To find a
trajectory that satisfies above property, the model should learn
these two kinds of attributes from the data.

B. Algorithm Details

This paper introduces diffusion-based trajectory planning
algorithm, as described in Fig. 2. The main objective of the
algorithm is to approximate the original distribution p(τ). To
solve aforementioned problem using diffusion model, this paper
defines forward process as follows,

τt+1 =
√
1− βtτt +

√
βtϵt, ϵt ∼ N (0, I). (2)

where βt is pre-defined monotonic increasing function. Noise
ϵt sampled from Gaussian process is added to the original
trajectory, making it noisy. To reverse this noisy state into
denoised state, this paper utilizes DDIM method, which greatly

Fig. 2: An illustration of the algorithm structure.

enhances the inference speed of the model [16]. Thus, backward
process is defined as follows,

τt−1 =
√
αt−1

(
τt −

√
1− αt · ϵ̂t(τt)√

αt

)

+
√

1− αt−1 − σ2
t · ϵ̂t(τt) + σtϵ̂t. (3)

where σt ∼ N (0, I) and αt = 1− βt. Here, ϵ̂t is the output
of the model given input τt. In order to get accurate denoised
state, the model minimizes below loss,

L = ∥ϵ̂t − ϵt∥2. (4)

The diffusion model is trained to estimate ϵt, which is the
noise applied to the trajectory τt. Additional reward estimator
is independently trained to provide a gradient ∇ log p(O|τ).
Reward estimator minimizes below loss,

Lr = ∥r̂(st, at)− r(st, at)∥2, (5)

where r̂(st, at) is the output of the reward estimator. This
reward estimator provides ∇ log p(O|τ), which is the second
term of the objective function.

Because generated trajectory τ̂0’s starting point ŝ0 is tailored
to s0, Diffuser algorithm uses same technique as impainting. In
particular, after the backward step t = 1, · · · , T , starting point
ŝt is replaced to st, forcing the diffusion model to generate
trajectory that satisfies ŝt = st.

For the implementation of the diffusion model, this paper
adopts U-net structure utilizing 1D convolution. Moreover,
for the implementation of the reward estimator, this paper
chooses CNN structure with multi-head attention, utilizing 1D
convolution. For the inference,

IV. PERFORMANCE EVALUATION

A. Experiment Setup
This paper verifies the proposed algorithm’s performance

using the door environment in D4RL dataset, which is rep-
resented by high-dimensional state and action space [17]. For
comparison, this paper selects DDPG and SAC, which are RL
algorithms for continuous actions [18], [19].
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TABLE I: A comparison between the GAI-based RL with
conventional RL algorithms.

Algorithms Final Rewards (Normalized)
DDPG -40.87
SAC -28.59

Diffusion-based -0.202
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Fig. 3: Normalized Rewards of the GAI-based RL and conven-
tional RL algorithms.

B. Experiment Results

As can be seen in Table I and Fig. 3, the proposed diffusion-
based algorithm shows equal or better performance compared
to other baselines. In particular, the proposed diffusion-based
RL shows 99.5% and 99.2% higher performance compared
to DDPG, SAC. In addition, the proposed diffusion-based
RL shows faster convergence compared to other algorithms.
Considering that DDPG and SAC are online algorithms, the
result implies that the proposed diffusion-based RL can suc-
cessfully replace conventional algorithms, eliminating the risk
from direct interaction with the environment. Note that diffuser
model rapidly achieves very high performance, unlike other RL
algorithms.

V. CONCLUDING REMARKS

Conventional RL algorithms face danger during the process,
which is from real-time interaction with the environment. To
remove the interaction from the learning process, GAI technolo-
gies are integrated with the offline RL. Experiment results show
that the proposed diffusion-based RL algorithm achieves similar
performance with previous RL algorithms without interaction
with the environment.
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