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Abstract—A recent trend in robotics AI is to use generative AI 
modeling techniques to inference about robot behavior such as 
diffusion models and flow matching techniques. In this paper, we 
present a technique to give the meaningful starting noise of these 
generative AI models and a possible training algorithm for the 
generative models which have denoising steps in reasoning 
process. The performance demonstration based on large-scale 
data, the meaningful coupling of training data and noise, and 
mixture of experts architectures will be demonstrated in further 
research. 
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I. INTRODUCTION  
AI models for generating robot actions are evolving from 

training the explicit patterns that directly map observations to 
actions to training implicit patterns that are hidden between 
observations and actions.  

Typical prior art applications of implicit pattern training 
methods to robot actions inference models include Diffusion 
Policy[1] and 𝜋𝜋0 [2], both of which take a random value 
sampled from a Gaussian normal distribution as the starting 
actions and use a denoising process to find the correct actions. 
These methods have no relationship between the starting 
actions (noise) and the correct action data you are looking for, 
so the inference results are likely to be scattered and inaccurate 
over the range of the estimated distribution of the correct 
actions data. To solve this problem, it is necessary to assume 
a more accurate distribution of correct actions data, which in 
turn requires a large amount of training data.  

To address these shortcomings in the training and 
inferencing robot actions, this paper proposes a noise coupling 
mechanism that applies a meaningful noise which is related to 
the correct actions.  

II. BASELINE TECHNOLOGIES 
Recently generative AI concept and technologies which 

have denoising steps for inferencing[3,4] are utilized in robot 
action reasoning AI  models[1,2]. Fig. 1 and 2 [5] briefly 
describe the diffusion model [3] and the flow matching [4] 
techniques, which are the mainstreams of denoising based 
generative AI theories that are trending in the latest robot AI. 

The sampled data from the Gaussian normal distribution 
becomes a starting noise in the denoising inference process 
that finally finds the inferred data which are in the scope of the 
correct data distribution. The starting noises in those methods 
[1,2,3,4], then, are not associated with the training data. They 

just are just randomly sampled from the Gaussian normal 
distribution, i.e. they are decoupled.  

 
Fig.1 Diffusion Model[5] 

 
Fig.2 Flow Matching[5] 

 

This paper proposes a method of replacing the starting 
noise with the one that reflects meaning in various ways – 
especially the latent variable from the conditional 
VAE(variational auto encoder)[6] algorithm. The result of this 
idea is expected to increase the correct answer rate as shown 
in Fig. 4[7] compared to the case where the starting noise and 
the correct answer data are not related at all (Fig. 3[7]).  

 
Fig.3 Noise decoupled inference:  

starting from random sampling noise, 
the inferred values are distributed over 
a large area encompassing the entire 
set of correct data[7] 

 
Fig.4 Noise coupled inference: 

utilizes sampling noise associated 
with the correct data, results in an 
inferred value that approximates the 
family of correct data[7] 

 

III. A NOISE COUPLING BASED ROBOT ACTION TRAINING 
ALGORITHM 

 

 
Fig.5  Brief Training Architecture 

 

 
Fig.6  Training Structure in 1st Phase : the same as cVAE[6] 
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Fig.7  Training Structure in 2nd Phase: the same as [2] 

 
Fig. 5 illustrates the overall brief structure of the proposed 

training process. The training is performed in two phases. In 
phase 1(Fig.6), the Starting Noise Generator(SNG) is trained. 
The loss functions used to train the SNG is the same as 
conditional VAE algorithm[6]. After the training of the SNG, 
we can have a pair of mean(𝜇𝜇) and variance(𝜎𝜎2) which the 
latent variable(𝑧𝑧) is sampled from. The mean and variance pair 
is the only information used for phase 2(Fig.7). The latent 
variable(z) is used as an input starting noise( 𝐴𝐴𝑘𝑘

0 ) to the 
Denoiser in training stage.  

The Robot Action Generator(RAG) in phase 2 could be 
any robot action AI model which has the denoising process 
such as Diffusion Policy[1] and 𝜋𝜋0[2]. In this paper, we are 
using 𝜋𝜋0  as the RAG. The following algorithm is a 
supplement to the 𝜋𝜋0  algorithm with the noise coupling 
method proposed in this paper. This algorithm is identical to 
𝜋𝜋0 except that it uses a 𝑧𝑧  value sampled(line 6) from a 
distribution following the mean(𝜇𝜇) and variance(𝜎𝜎2) values 
generated by the SNG at the initial noise setting (line 10) and 
inputs the set value into the learning process (line 12). 

 

Algorithm : 𝜋𝜋0[2] based Noise Coupled Training 
1: Given: Training data set 𝒟𝒟. 
2: Let 𝔼𝔼, ℰ represent # of episode, # of epoch, 𝜇𝜇, 𝜎𝜎2represent 

mean and variance from SNG, 𝑇𝑇𝑘𝑘,𝑂𝑂𝑘𝑘  represent a task, 
observations at step 𝑘𝑘. 

3: Let 𝐴𝐴𝑘𝑘
𝑡𝑡  represents an action sequence at step 𝑘𝑘 & time 𝑡𝑡, 

where 𝐴𝐴𝑘𝑘
0  is a starting noise action and 𝐴𝐴𝑘𝑘

1  is a final answer 
action at step k.  

4: Initialize encoder 𝑞𝑞𝜑𝜑(𝑥𝑥|𝑇𝑇𝑘𝑘,𝑂𝑂𝑘𝑘) 
5: Initialize denoising process 𝛿𝛿𝜃𝜃(𝑉⃑𝑉 |𝑥𝑥, 𝑧𝑧) 
6: Sample 𝑧𝑧 from  𝑁𝑁(𝜇𝜇, 𝜎𝜎2) 
7: for  iteration steps 𝑘𝑘 = 1, 2, … , 𝔼𝔼 × ℰ do 
8:  Sample 𝑥𝑥 from  𝑞𝑞𝜑𝜑(𝑥𝑥|𝑇𝑇𝑘𝑘, 𝑂𝑂𝑘𝑘), where 𝑥𝑥 is an 

 embedding value of the task and observations at step 𝑘𝑘 
9:  Sample 𝑡𝑡 =  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(0,1) 
10:  Let 𝐴𝐴𝑘𝑘

0 = 𝑧𝑧, the starting noise is coupled 
11:  Get 𝐴𝐴𝑘𝑘

𝑡𝑡 = 𝑡𝑡 ∙ 𝐴𝐴𝑘𝑘
1 + (1 − 𝑡𝑡)𝐴𝐴𝑘𝑘

0  
12:  Predict 𝑉⃑𝑉  with 𝛿𝛿𝜃𝜃(𝑉⃑𝑉 |𝑥𝑥, 𝐴𝐴𝑘𝑘

0) 
13:  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =  𝑀𝑀𝑀𝑀𝑀𝑀(𝑉⃑𝑉 , 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝐴𝐴𝑘𝑘

1 , 𝐴𝐴𝑘𝑘
0)) 

14:  Update 𝜃𝜃 with 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 

 

IV. FUTURE WORKS 
The approach in this paper is expected to be very useful 

when training a separate data set specialized for unit actions 
of robots, and the following future tasks are to be necessary. 
If we can obtain refined training data by categorizing robot 
actions, the training data for each categorized action is 
predicted to distributed closer to each other, as shown in 
Fig. 4. By separating the data in this way and focusing on 
training, the noise coupling approach is expected to be even 
more effective. In such a case, it is anticipated that a 
technique for selectively utilizing initial noise according to 
the task to be performed will be required during the 
inference stage. It is also anticipated that a MOE(Mixture 
of Expert) structure that constructs and utilizes more 
specialized action expert models for each task will be 
effective.  
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characterizing security threats. When CVEs are not explicitly
specified, Snort rule identifiers (i.e., SID) can be used to find
relevant CVEs to infer potential threat vectors. We create a
graph as shown in Fig. 1, where the nodes are either:

• Subnets (attacker/victim networks), derived from the IPs
grouped by CIDR notation, and

• CVE nodes, representing known vulnerabilities.
Each directed edge in the graph represents either (source
subnet → CVE) or (CVE → destination subnet). The edge
from a source subnet to a CVE represents an attempt by
an attacker within that subnet to exploit the corresponding
vulnerability. Conversely, the edge from a CVE to a destination
subnet indicates that a host in the destination subnet is a
potential victim of an attack leveraging that vulnerability.

B. Graph Neural Network for Threat Prediction

We use Graph Convolutional Network v2 (GCN2) [6],
which improves the classical GCN by introducing initial resid-
ual connections and identity mapping, allowing the original
input features to be incorporated into each layer’s output. We
train the GCN2 model using positive samples from existing
edges in the DAG and construct negative samples by sampling
unconnected node pairs. The GCN2 model serves as an
encoder to generate node embeddings. To predict the existence
of a link, we use a lightweight multi-layer perceptron (MLP)
classifier, which outputs a probability score between 0 and 1
indicating the likelihood of a link between two nodes.

III. EXPERIMENT RESULTS

We used Snort fast-alert logs from Security Repo (SecRepo)
for training our DAG-based intrusion detection model [7]. We
extracted CIDR-based subnets with a 12-bit network prefix
and the associated CVEs from the logs. The resulting DAG
comprises 90 subnet nodes and 9 CVE nodes with 87 subnet
→ CVE edges and 19 CVE → subnet edges as shown in Fig. 1.
For each link, we annotate a priority level based on Snort’s
SID severity. A balanced set of positive (existing) and negative
(non-existent) edges is constructed for supervised training. The
test dataset comprises 20% of links.

Fig. 2 shows the score distribution histogram and ROC (re-
ceiver operating characteristic) curve of the threat prediction.
In Fig. 2a, most positive and negative links yield high and
low predicted scores, respectively, with only a few exceptions,
resulting in a highly separable distribution. Fig. 2b shows the
ROC curve with AUC (area under the ROC curve) of 0.9091,
indicating a strong discriminative performance.

IV. CONCLUSION

We proposed a novel approach to cyber threat prediction
using GNNs on DAGs constructed from IDS logs. The DAG
presents the attacker–CVE–victim relations as directed edges,
and the GCN2 model is trained to predict the unseen links on
the graph, which are considered potential threats. Experimental
results on real Snort data demonstrate that the proposed GNN-
based approach achieves high prediction performance with
AUG of 0.91 in binary link prediction.

(a) Distribution of prediction scores

(b) ROC curve of link prediction results

Fig. 2: Performance evaluation of GNN-based link prediction.
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