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Abstract—The rapid expansion of Unmanned Aerial Vehicle
(UAV) operations has raised critical concerns about their envi-
ronmental impact in achieving global net-zero emissions targets.
Traditional Aerial Mobility Control (AMC) systems prioritize
operational metrics while overlooking carbon footprints from
flight operations, battery charging, and computational overhead.
This paper presents a comprehensive review of carbon-aware
AMC systems that integrate sustainability considerations into
UAV decision-making. We systematically analyze three primary
paradigms: classical optimization-based methods, Reinforcement
Learning (RL) techniques, and emerging Large Language Model
(LLM)-guided systems. Through comparative analysis, we iden-
tify that LLM-driven approaches offer unprecedented flexibil-
ity through natural language reasoning, enabling sophisticated
temporal carbon optimization and intuitive fleet coordination.
However, significant challenges remain including computational
efficiency, response time variability, and safety verification for
stochastic language generation. Our analysis reveals key research
gaps including the meta-challenge of LLM energy consumption
potentially offsetting UAV carbon savings and the need for robust
verification mechanisms. This review provides a roadmap for
future research in sustainable aerial mobility systems that balance
operational efficiency with environmental responsibility.

Index Terms—Unmanned Aerial Vehicles (UAVs), Aerial Mo-
bility Control (AMC), Large Language Models (LLMs), Carbon-
aware control

I. INTRODUCTION

The rapid proliferation of Unmanned Aerial Vehicles (UAVs)
across diverse application domains has transformed modern
logistics, surveillance, and urban service delivery [1], [2].
From package delivery systems operated by major e-commerce
platforms to emergency response networks and smart city
infrastructure, UAVs have become indispensable components
of contemporary mobility ecosystems [3]. However, as UAV
operations scale to support hundreds of thousands of daily
flights, their cumulative environmental impact has become
a pressing concern for achieving global net-zero emissions
targets [4].

Traditional Aerial Mobility Control (AMC) systems prioritize
operational metrics such as flight time minimization, collision
avoidance, and service reliability, often overlooking the carbon
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Fig. 1: Carbon-aware UAV routing system coordinating mul-
tiple UAVs in urban environments with LLM-guided decision
making for sustainable aerial mobility control.

footprint of UAV operations [5]. This oversight becomes par-
ticularly problematic when considering the complete lifecycle
emissions of UAV systems, including energy consumption
during flight operations, battery charging from carbon-intensive
power grids, and the computational overhead of control al-
gorithms running on energy-consuming infrastructure [6], [7].
The emergence of carbon-aware computing paradigms in cloud
systems, data centers, and edge networks has demonstrated
the feasibility of integrating sustainability metrics into real-
time decision-making processes [8]. Building upon these de-
velopments, researchers have begun exploring how similar
principles can be applied to aerial mobility systems, leading
to the development of carbon-aware AMC frameworks that
explicitly consider environmental impact alongside traditional
performance objectives.

This paper provides the first comprehensive examination of
carbon-aware AMC research, offering a systematic taxonomy
of existing approaches, identifying key technical challenges,
and outlining future research directions. Our contributions in-
clude: (1) a comprehensive classification of carbon-aware AMC
methodologies, (2) analysis of carbon modeling approaches
and their accuracy trade-offs, (3) evaluation of integration
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challenges between sustainability and performance objectives,
and (4) identification of open research problems and future
opportunities.

II. RELATED WORK
A. Classical Control Paradigms

Traditional AMC evolved from optimization-based ap-
proaches rooted in vehicle routing and path planning problems,
primarily focusing on minimizing flight time, fuel consumption,
and collision avoidance [9]. Early approaches adapted Trav-
eling Salesman Problem (TSP) and Vehicle Routing Problem
(VRP) formulations to three-dimensional airspace, incorporat-
ing constraints such as no-fly zones, altitude restrictions, and
payload limitations. These methods typically employed Mixed-
Integer Linear Programming (MILP), genetic algorithms, and
particle swarm optimization to solve multi-UAV coordination
problems [10].

The primary advantage of optimization-based approaches lies
in their ability to provide globally optimal solutions under well-
defined constraints and their mathematical rigor in handling
complex operational requirements. Recent multi-objective op-
timization frameworks simultaneously consider multiple per-
formance metrics, leading to Pareto-optimal solution sets that
reveal trade-offs between competing objectives [11]. However,
these methods suffer from significant computational scalability
issues as fleet sizes increase, often requiring exponential time
complexity that makes real-time application challenging.

Reinforcement Learning (RL) emerged to address dynamic
environments and uncertain conditions that traditional opti-
mization methods struggle to handle [12]. Early single-agent
approaches used Deep Q-Networks (DQN) and policy gradi-
ent methods, evolving to Multi-Agent Reinforcement Learning
(MARL) systems like Multi-Agent Deep Deterministic Policy
Gradient (MADDPG) for fleet coordination [13]. While RL
excels in adaptive learning and handling complex interactions,
it faces sample efficiency challenges, safety concerns during
exploration, and black-box interpretability issues for regulatory
approval [14].

B. LLM-Based Control and Carbon-Aware Computing

Large Language Models (LLMs) recently entered AMC
through natural language processing capabilities for high-level
mission planning and decision-making [15]. These systems
encode operational constraints, environmental conditions, and
mission objectives into structured text prompts, generating
human-readable flight plans that can be translated into exe-
cutable control commands [16]. LLMs demonstrate particu-
lar strength in handling heterogeneous constraints and pro-
viding explainable decisions, but face computational over-
head, response time inconsistency, and safety verification chal-
lenges [17]. Carbon-aware computing originated in cloud com-
puting and data center management, where researchers devel-
oped techniques to minimize the carbon footprint of computa-
tional workloads by leveraging temporal and spatial variations
in electricity grid carbon intensity. Key techniques include
carbon intensity forecasting, workload migration strategies, and

demand response that shifts energy consumption to periods
of high renewable generation. This paradigm has expanded to
edge computing, mobile systems, and IoT networks, inspiring
adaptation to transportation networks including AMC systems.

III. LLM-DRIVEN CARBON-AWARE AMC

The integration of LLMs into carbon-aware AMC sys-
tems represents a fundamental paradigm shift toward natu-
ral language-driven decision making that can simultaneously
optimize operational efficiency and environmental sustainabil-
ity [18]. This approach leverages the inherent reasoning ca-
pabilities of LLMs to process diverse information sources and
generate comprehensive flight strategies that explicitly consider
carbon emissions alongside traditional performance metrics.

The core system architecture employs a three-layer design:
environmental data aggregation collecting real-time carbon in-
tensity, weather, and airspace information; natural language
interface converting structured data into LLM-processable
prompts; and execution layer translating generated plans into
control commands [19]. Unlike traditional optimization requir-
ing explicit mathematical formulations, LLMs process textual
descriptions of operational requirements, regulatory constraints,
and environmental considerations within a unified framework,
enabling seamless adaptation to new constraints without sys-
tem redesign. LLM-driven systems excel at temporal carbon
optimization through natural language interpretation of grid
carbon intensity forecasts. The system understands linguistic
concepts such as "low carbon periods during midday solar
generation" and "high carbon intensity during evening peak
demand,"” enabling sophisticated charging schedule optimiza-
tion that balances immediate operational needs against longer-
term carbon objectives [20]. This linguistic reasoning provides
transparency often lacking in black-box optimization algorithms
while enabling direct incorporation of regulatory and policy
constraints through textual descriptions. The temporal opti-
mization process incorporates reasoning about uncertainty and
risk management, enabling robust decisions under incomplete
information about future carbon intensity and operational re-
quirements. Fleet-level coordination through LLMs introduces
natural language-based multi-agent communication, facilitating
intuitive coordination strategies that consider collective carbon
footprints while ensuring individual mission success. The sys-
tem reasons about resource allocation, charging assignments,
and route coordination using natural language logic that mirrors
human decision-making processes [21]. This capability enables
incorporation of high-level strategic objectives that may be
difficult to encode in traditional optimization formulations, such
as "prioritize carbon reduction during peak demand periods
while maintaining emergency response capability [22]."

However, significant challenges remain in LLM-based
carbon-aware AMC. Response time variability due to fluc-
tuating LLM processing complexity threatens real-time per-
formance guarantees essential for safety-critical operations.
The stochastic nature of language generation raises reliability
concerns, as identical inputs may produce different outputs,
potentially compromising operational consistency [23]. Safety
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verification for LLM-generated plans presents unprecedented
challenges, as traditional formal verification methods are not
directly applicable to natural language reasoning processes.
Additionally, the computational overhead of LLM processing
creates a meta-challenge where the energy consumption of
language model inference may offset carbon savings from
optimized UAV operations, motivating research into energy-
efficient architectures and hybrid systems that balance reasoning
capability with computational efficiency.

IV. CONCLUSION

This paper has provided a comprehensive examina-
tion of carbon-aware AMC systems, tracing the evolu-
tion from traditional performance-oriented approaches to
sustainability-integrated frameworks. Through systematic anal-
ysis of optimization-based methods, RL techniques, and emerg-
ing LLM-guided systems, we have identified the unique ad-
vantages and limitations of each paradigm in addressing the
dual challenges of operational efficiency and environmental sus-
tainability. The emergence of LLM-driven carbon-aware AMC
represents a significant paradigm shift that offers unprecedented
flexibility in handling diverse constraints and objectives through
natural language reasoning. These systems demonstrate partic-
ular strength in integrating heterogeneous data sources, pro-
viding explainable decision-making processes, and adapting to
evolving regulatory requirements without fundamental system
redesign. However, challenges remain in ensuring computa-
tional efficiency, maintaining real-time performance guarantees,
and providing robust safety verification for stochastic language
generation outputs.

The field of carbon-aware AMC is at a critical juncture
where technological capabilities are rapidly advancing while
regulatory frameworks and industry standards are still evolving.
The successful deployment of these systems will require con-
tinued collaboration between researchers, industry practitioners,
and regulatory bodies to establish appropriate safety standards,
performance benchmarks, and environmental accounting frame-
works. As UAV operations continue to scale globally and envi-
ronmental regulations become more stringent, the development
of effective carbon-aware AMC systems will be essential for
ensuring that the benefits of aerial mobility can be realized
without compromising global climate objectives.
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