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Abstract—We propose the Augmented State Neural-Transition
EKF (ANT-EKF), a hybrid filtering framework that embeds a
learnable neural transition model inside the extended Kalman
filter. By augmenting the state with the neural network’s param-
eters, ANT-EKF jointly tracks the physical state and adapts the
dynamics model online using Jacobians obtained via autograd.
We instantiate the method for (i) object trajectory tracking and
(ii) RIS-assisted mobile channel tracking, where the measurement
remains linear in the real-stacked channel. Simulations show
that ANT-EKF achieves accurate tracking and reduces NMSE
compared with EKF variants relying on fixed, hand-crafted
dynamics.

Index Terms—Extended Kalman Filter, Deep Neural Network

I. INTRODUCTION

The Kalman filter (KF) stands as a cornerstone of modern
estimation theory as it provides a powerful and efficient recur-
sive solution to the problem of inferring the latent state of a
dynamic system from noisy measurements [1]. The extended
Kalman filter (EKF) further broadens this applicability to non-
linear, second-order systems [2], [3]. However, the celebrated
optimality of these filters hinges on a critical assumption that a
precise mathematical model governing the system’s dynamics is
perfectly known beforehand. The accuracy of this ideal model
significantly affects the performance and stability of the EKF
[4].

In practice, the system model is often a hand-crafted sim-
plification, such as a constant velocity or constant acceleration
model, which is assumed to be known and fixed throughout the
tracking process. This approach creates a significant mismatch
with the complex and highly nonlinear dynamics of real-world
mobile channels and can often lead to filter divergence [5]. To
bridge this gap, recent research has developed towards hybrid
approaches that fuse data-driven approach with EKF [6], [7].
In particular, previous work leveraged DNN [6] and a long-
short term memory (LSTM) [7] to learn complex mobility
patterns from data, and used the predictions to assist a separate
KF in the tracking task. While these data-driven approaches
have shown improved performance, they operate on pre-trained,
static model of the environment, which leaves the system
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vulnerable to environmental dynamics not encountered during
its offline training phase [8], [9].

To overcome the limitations of the conventional aforemen-
tioned offline design methods, we propose an augmented state
neural-transition EKF (ANT-EKF), a novel EKF-based frame-
work that enables online learning of the system dynamics.
The core innovation of our work lies in augmenting the state
vector of the EKF. Specifically, instead of only tracking the
physical state of the system, we expand the state to include
the parameters, the weights and biases of the neural network,
that models the unknown state transition function. With each
measurement update, the filter not only refines its estimate of
the physical state but also simultaneously updates and adapts
the parameters of the internal dynamics model. This allows
the filter to learn and adapt to the complex, time-varying
dynamics of the environment in real-time, without requiring
any prior training or a predefined motion model. In this paper,
we apply this novel approach to the object trajectory tracking
and wireless channel tracking problems and show that ANT-
EKEF is suitable for producing significantly accurate results.

II. AUGMENTED STATE NEURAL-TRANSITION EKF

The KF provides an optimal solution for linear systems,
and its application to the nonlinear dynamics is dealt with
EKF by approximating the nonlinear system locally with a
linear one at each time step. This is achieved through the
computation of Jacobian matrices, which linearize the nonlinear
transition and observation functions in a neighborhood of the
current estimate. The ANT-EKF extends the EKF framework
to incorporate learnable dynamics. Instead of relying solely
on hand-crafted models, ANT-EKF augments the state with
the parameters of a neural network that governs the unknown
part of the system dynamics. These parameters are updated
online as part of the recursive filtering process and enable
the model to adapt to complex and time-varying behaviors.
Specifically, in ANT-EKEF, the state is augmented with neural
network parameters as Ty = [Sg, Ok]T, where s, denotes the
physical system state and 6 the learnable parameters. The
transition model is expressed as xy1 = Pg, (zr) + Wy, with
process noise wy ~ N(0,Q), where ®g(-) is a nonlinear
mapping parameterized by 6. The measurement model follows
Yy, = h(xy) + v, with measurement noise vy ~ N (0, R).
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Fig. 1: Moving object and measurement landmark.

ITI. APPLICATION I: OBJECT TRAJECTORY TRACKING
A. System Model
Consider a mechanical object moving along a circular tra-
jectory given by
z(t) =z, + Rcoswt,
y(t) =y, + Rsinwt,

D
2

where (x.,y.) are the center coordinates, R is the radius and
w is the angular velocity. The velocity of the object is obtained

as
. T —Rw sin wt
v(t) =p(t) = LJ B [Rw coswt] : )
We introduce a nonlinear function fg : R?2 — R? that

captures the unknown dynamics of the object, mapping the
position p to a velocity term. The mapping is parameterized
by a DNN with its parameters 0, which is a collection of all
weights and biases of the network. We enable online training
by augmenting the parameters 6 into the system state. The
augmented state is thus defined as & = [p,0]" € R2tme,
where p = [z,y]" and ny denotes the object’s position and
total number of parameters, respectively. Therefore, the k + 1-
th state evolves from k-th state according to

)AL
Tht+1 = [pk * f%kk(pk) } twg,

“4)

O(xk)

where wy, ~ N'(0,Q) and Q = diag(o212,051,,) and At is
the sampling interval between k and k + 1. Here, the function
mapper, parameterized by DNN is formally described as

fg(p) = WLU(WL_lo'(. .. O'(Wlp + bl)) + bL—l) + b, (5

where o(-) = tanh(-).

As illustrated by Fig. 1, a measuring device at landmark
(zr,yr) provides measurement expressed as y, = h(xy) +
vk, where vi ~ N(0,R), where h(z) = [r,0]T, r =
V@ =207+ (=)’ B = atan®(y — yp.@ — x1), and
R = diag(07,03). Since h(:) is a nonlinear function, we find
its Jacobian such that the EKF takes advantage of the local
linearity. The Jacobian is described as

Hk — |:8T/8p 01><7L9:|

85/617 01 Xng (6)
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Fig. 2: True and estimated trajectory of the object.

0 1 0 1
where 87; = ;[l’ —2r,y—yL), and 575) = Tj[*(y —yL),x—
xr]. The complete EKF algorithm for object tracking is then

described by Algorithm 1.

Algorithm 1: ANT-EKF for Object Tracking

Input: Initial state ®g)q, covariance Py, process noise
@, measurement noise R
Output: Estimated states &y, and covariances Py
1 Initialization: Set & = 0.

2 repeat
3 Prediction: 2,1 = ®(Ty_1x—1).
Py =Fi Py 1,1 F, +Q, where
0P
M oz
Update:

Innovation: g, = h(Zgk—1)-
Sk =HiPy,_H, +R.
Ky =Py, H.S; "

Tk = Trjp—1 + Krlyy — Uil
Pyp=I—~ KyHy)Ppjp_1.
10 Set k <k +1.

11 until stopping criterion is reached,

L-IECCREEN B N

B. Experiment

Fig. 2 compares the true two-dimensional trajectory (blue)
with the ANT-EKF estimate (orange) for the range-and-bearing
sensor located at the center. The two curves are nearly indistin-
guishable along the arc, indicating that after a brief initialization
the filter locks onto the motion and displays very small position
error. This is because the learned transition provides a good
prior each step, while the EKF update corrects any drift and
keeps the estimate on the circular path.

IV. APPLICATION II: MOBILE CHANNEL TRACKING
A. System Model

Consider an RIS-assisted SISO system with a single bases-
tation (BS) and a single user equipment (UE) given as Fig 3.
The RIS with N cells forms a reflection link between BS and
UE by controlling the phase of the reflected signals. We use
G® e CY and hY) € CV to denote the channel between BS
and RIS, and between RIS and UE, respectively. The channel
function h® is defined as h*) = G(t)diag(u(t))hgf) € C=

817



controller RIS: (0,0, 0)

‘ G(t)ecy

(5,35,~20)

((( ')) - z y he(t) eV
.l x/ UE area
BS: (100, -100, 0) \>1/

blockage

(35,-35,-20) (35,35,-20)

Fig. 3: Overall RIS assisted channel tracking system.

() ThY, where ) is the RIS reflection coefficient and
hgt) is the cascaded channel between BS and UE.

In the Cartesian coordinate system shown in Fig. 3, the BS
and RIS are located at (100, —100, 0) and (0, 0, 0), respectively.
A single UE position follows a curved trajectory which is de-
fined by the polar coordinate system above the UE area. For the
exact channel modeling based on Rician fading, we followed
the model of [10]. Define h = [R{h},3{h}]T € R?N, then,
the augmented state is defined as = = [h,9]T € R2N+Mo,
where 1 is the parameter of the function mapper defined in the
state transition described as

Tpi1 = {hk +£’Z"’(hk)] +wy, wr ~N(0,Q). (7)

—_———
g(x)
The measurement is taken via pilot signal from the user to
the BS described as zy = /P, A(vg) hy + vy, where vy, ~
Rt —S{v'}

2 _ 2x2N
N(0,R) € R* and A(v) = [% v R{wT €eR :
Algorithm 2 describes the rest of the EKF procedure for this
application.

Algorithm 2: ANT-EKF for Mobile Channel Tracking
1 Input: Pu7 Q7 Ra ﬁ:0|07 PO\U) {Vk,zk:}z:l

2 Output: {@y,, Prjp}f_,

3 Initialization: Set k < 1.

4 repeat
5 Prediction: ;1 = g(&p_1jx—1)s
Pyi-1=FyPy_1_1F} + Q, where
F, = Ioy +Jn Jﬂ}
0 11\419 ’

p A _ 9f9(h) Jg = afgéﬁ)

Ep_1k—1 Tp—1]k—1

7 Update: Innovation:

Zijk—1 = M@ p—1) = Hy Zpp—1, with

Hy, = [VP, A(vi) Ooxry], 7o = 25 — Zpji—1,
8 Sk:HkPMk_lH;—‘FR,

9 | Kj=Py,_H,S;"

10 | Tpp = Tgp—1 + KgTg,

u | Pyp=—-KiHg)Py

12 Set k + k+ 1.

13 until £ > T

NMSE (dB)
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Fig. 4: Normalized mean squared error (dB).

B. Experiment

Fig. 4 shows the per-frame NMSE (gray) and its moving
average (blue) during RIS-assisted channel tracking with ANT-
EKF. The error starts high in the initial transient, when the
filter has little information about the cascaded channel and
the neural transition parameters, but drops quickly as pilot
measurements are assimilated. After 100-200 frames the curve
flattens and continues a slow descent toward O to 1 dB,
indicating sub-dB estimation error relative to channel power.
The small oscillations reflect measurement noise, pilot-phase
diversity, and natural channel fluctuation, while the absence of
upward drift shows the filter/parameter updates remain stable
as the model adapts online.

V. CONCLUSION

We introduced the ANT-EKF, which jointly estimates the
system state and a learnable transition model by augmenting
the EKF state with neural-network parameters. Experiments
on object tracking and RIS-assisted channel tracking show
accurate trajectory estimates and steadily decreasing NMSE.
Future work will extend ANT-EKF to more complex dynamical
settings.
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