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Abstract—Large language models (LLMs) have rapidly ad-
vanced task automation by enabling high-quality natural language
understanding, reasoning, and multi-modal interaction across
domains such as software development, healthcare, customer
service, and scientific discovery. Despite their transformative
potential, challenges such as high computational cost, domain
adaptation, safety, and robust error handling remain significant
barriers to practical deployment. Recent research has addressed
these issues through techniques including parameter-efficient fine-
tuning, retrieval-augmented generation, domain-specific pretrain-
ing, tool integration, and multi-agent orchestration frameworks,
which collectively improve scalability, adaptability, and reliability.
This paper presents a comprehensive survey of state-of-the-art
approaches to LLM-driven task automation, systematically catego-
rizing methods by optimization strategy, integration architecture,
and application scenario. Implementation challenges are further
analyzed, and emerging solutions are reviewed that aim to balance
performance, efficiency, and trustworthiness. This review provides
a synthesized perspective on how LLMs are evolving toward
robust, context-aware automation systems suitable for real-world
deployment.

Index Terms—Large Language Models, Task Automation,
Multi-Agent Systems, AI Integration

I. INTRODUCTION

In recent years, artificial intelligence has experienced re-
markable progress across multiple domains, including natural
language processing, computer vision, and decision-making
systems [1]. Among these advancements, large language models
(LLMs) have emerged as a core enabler of next-generation
automation systems [2]. Leveraging extensive pretraining on
massive text and multi-modal datasets, LLMs have demon-
strated exceptional capabilities in natural language understand-
ing, reasoning, and content generation [3]. These strengths have
facilitated their integration into diverse application scenarios,
such as software engineering, healthcare diagnostics, legal
document analysis, customer support, and scientific discovery.
One of the most powerful aspects of LLMs is their ability to
generalize across tasks through few-shot and zero-shot learning,
enabling rapid adaptation without extensive domain-specific
retraining [4], [5]. Combined with emerging frameworks for
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tool augmentation and application programming interface (API)
orchestration, LLMs are increasingly positioned as central
agents in automated workflows that require complex reasoning
and multi-step decision-making.

However, the impressive capabilities of LLM-based automa-
tion systems come with significant challenges. High compu-
tational costs and large memory requirements pose barriers
to deployment in resource-constrained environments [6]. At
the same time, prompt sensitivity, hallucination errors, domain
adaptation limitations, latency in real-time systems, and safety
concerns create additional hurdles for robust and trustworthy
adoption [7], [8]. Deploying an LLM-based automation agent
in mission-critical settings such as medical diagnosis or legal
reasoning requires not only high accuracy but also reliable
fail-safe mechanisms and verifiable outputs. To address these
challenges, recent research has explored a range of strategies
to improve efficiency, adaptability, and reliability, including
parameter-efficient fine-tuning, retrieval-augmented generation,
domain-specific pretraining, multi-agent collaboration, and tool
integration for external system interaction. Such approaches
have shown promise in mitigating current limitations while
expanding the range of feasible deployment scenarios. This
paper presents a comprehensive review of recent techniques
and frameworks for LLM-driven task automation. The anal-
ysis covers optimization strategies, integration architectures,
and representative application cases, and also examines im-
plementation challenges alongside emerging solutions aimed
at enhancing efficiency, scalability, and reliability in diverse
operational environments.

This paper is organized as follows. Section II outlines the
architecture and key principles of large language models. Sec-
tion III reviews recent techniques and frameworks for LLM-
driven task automation. Section IV concludes the paper and
suggests future research directions.

II. ARCHITECTURE OF LARGE LANGUAGE MODELS

LLMs are built upon the Transformer architecture, which,
as illustrated in Fig. 1, relies on self-attention mechanisms
to capture long-range dependencies and represent contextual
relationships between tokens in a scalable manner [9]. The at-
tention mechanism allows each position to attend to every other,
integrating information from the entire sequence [10]. While the
Transformer framework provides a unifying foundation, LLMs
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can be implemented in three main configurations: encoder-
only, encoder–decoder, and decoder-only, each optimized for
different categories of tasks.

Encoder-only architectures process sequences bidirectionally,
enabling each token to attend to both preceding and succeeding
tokens during representation learning. This design produces rich
semantic representations, which are particularly effective for
understanding-focused tasks such as classification, ranking, or
retrieval. The absence of masking in the attention mechanism
allows full visibility across the sequence, capturing complex
contextual relationships. Encoder–decoder architectures consist
of two components: the encoder converts the input into latent
representations, and the decoder generates the output sequence
using both self-attention and cross-attention. This structure is
well-suited for tasks where input and output differ in length
or modality, including translation, summarization, and struc-
tured data generation. Decoder-only architectures stack multiple
Transformer decoder layers, each containing masked multi-
head self-attention to ensure predictions depend only on pre-
ceding tokens. A position-wise feed-forward network follows
to expand representational capacity, with residual connections
and normalization layers to stabilize training. Given an input
X ∈ Rn×d, self-attention can be expressed as,

Attention(Q,K, V ) = softmax
(
QK⊤
√
dk

)
V, (1)

where Q, K, and V are the query, key, and value matrices from
learned projections of X , and dk is the key vector dimension.

Across all configurations, positional encodings are added
to token embeddings to represent sequence order, compensat-
ing for the attention mechanism’s lack of inherent positional
awareness. These encodings may be fixed sinusoidal patterns
or learned parameters. Tokenization methods, such as byte pair
encoding or sentencepiece, segment text into subword units,
balancing vocabulary size, coverage, and efficiency. LLMs
are typically pretrained on large-scale corpora with objectives
that align with their architectural design. For encoder-only
models, masked token prediction is used to reconstruct hidden
tokens from context. Encoder–decoder models are trained with
sequence-to-sequence objectives, optimizing the probability of
generating the correct output given input. Decoder-only models
use an autoregressive objective, predicting each token from
all preceding tokens. After pretraining, models are adapted to
downstream tasks through fine-tuning, instruction tuning, or
parameter-efficient adaptation methods that update only part
of the parameters while retaining the benefits of large-scale
pretraining.

III. TECHNIQUES AND FRAMEWORKS FOR LLM-DRIVEN
TASK AUTOMATION

Recent advancements in LLMs have enabled a broad spec-
trum of task automation solutions across diverse domains,
ranging from administrative workflows and mobile applications
to robotics and intelligent transportation. These frameworks
combine the language understanding and reasoning capabilities
of LLMs with domain-specific tools, APIs, and multi-modal

Fig. 1: Overall architecture of the LLM, illustrating the
data flow from input representation to output generation via
attention-based transformer blocks.

processing to achieve efficient, scalable, and context-aware au-
tomation. They often leverage a combination of retrieval-based
methods, tool orchestration, and adaptive prompting strategies
to align LLM outputs with real-world operational constraints.
This section reviews representative approaches, categorized by
their target environment and core technical strategies.

One study proposed a healthcare administrative task au-
tomation framework to streamline workflows such as patient
scheduling, insurance claim processing, and clinical documen-
tation. The system integrates retrieval-augmented generation for
accurate domain-specific responses and task planning modules
that ensure compliance with healthcare regulations, demonstrat-
ing notable time savings for administrative staff while main-
taining high data accuracy [11]. Another paper, VisionTasker,
introduced a multi-modal mobile automation framework that
combines on-device screen capture analysis with LLM-based
task planning to interpret UI layouts and icons from visual
input, map them to functional actions, and execute them via
platform-specific APIs [12]. This design enables automation
in applications without direct API access, making it suitable
for third-party apps in mobile ecosystems. Complementarily,
AutoDroid employed a more API-centric approach, where
LLMs generate executable Android Debug Bridge (ADB) com-
mands directly from natural language instructions, prioritizing
efficiency in direct command execution [13].

In the area of benchmarking, TaskBench provides a stan-
dardized evaluation protocol to measure task success rates,
reasoning accuracy, and execution efficiency across diverse
automation scenarios, ranging from file management to web-
based workflows [14]. The benchmark includes both synthetic
and real-world task sets, enabling systematic comparisons
across different LLM architectures and prompting techniques.
By offering quantitative metrics and reproducible test cases,
TaskBench facilitates fair performance evaluation and identifies
strengths and weaknesses of competing automation frame-
works. In the education domain, another study developed LLM
agents for automating tasks such as personalized feedback
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generation, grading, and content creation for learners [15].
These agents integrate with learning management systems and
adapt their output to pedagogical requirements, employing
multi-agent orchestration to decompose complex requests into
sub-tasks for reliable and aligned responses. Pilot deployments
in higher education settings reported increased grading effi-
ciency, improved consistency in feedback, and higher student
satisfaction compared to manual grading. For physical-world
automation, the linear programming-integrated large language
model (LiP-LLM) combines LLM-based task decomposition
with linear programming and dependency graph modeling to
coordinate multi-robot task planning [16]. This approach inte-
grates symbolic optimization with natural language reasoning
to achieve efficient scheduling and execution in multi-agent
robotic environments. In experiments with warehouse robots,
LiP-LLM demonstrated significant reductions in idle time and
improved overall throughput. In a related direction, VistaGPT
targets intelligent transportation systems by applying a gener-
ative parallel transformer architecture to process multi-modal
traffic data and coordinate vehicle operations [17]. Its ability to
perform real-time route planning, traffic flow optimization, and
inter-vehicle communication makes it suitable for large-scale
deployment in connected autonomous vehicle networks.

Overall, these studies illustrate the breadth of LLM-driven
task automation, across domains from digital workflows to
physical-world operations. By integrating natural language un-
derstanding with vision-based perception, structured planning,
and domain-specific tool usage, these frameworks demonstrate
how LLMs can be tailored to meet diverse needs while main-
taining scalability and reliability across environments.

IV. CONCLUSION

This paper presented a comprehensive review of recent
techniques and frameworks for LLM-driven task automation,
covering domains from healthcare and education to robotics and
intelligent transportation. By surveying representative research,
this paper identifies the core strategies that enable LLMs to
act as robust, context-aware agents capable of performing
complex workflows with minimal human intervention. The re-
view organized existing work according to architectural design
choices, integration approaches, and domain-specific adapta-
tions, providing a structured perspective on the current state of
the field. Representative works showcased retrieval-augmented
generation for domain accuracy, multi-modal perception for
graphical user interface understanding, symbolic optimization
for multi-agent coordination, and benchmarking frameworks
for standardized evaluation. These approaches demonstrate how
LLMs can integrate language reasoning with vision, structured
planning, and API-based control to deliver scalable automation
solutions. The surveyed studies indicate that LLM-driven au-
tomation is moving from experimental prototypes to practical
systems for both digital and physical environments. Future
research is expected to explore hybrid architectures that merge
multi-modal inputs with symbolic reasoning, as well as adaptive
execution strategies that adjust computation based on task com-
plexity and constraints. Strengthening safety, interpretability,

and resource efficiency will remain key priorities in deploying
trustworthy, high-performance automation agents at scale.
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