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Abstract—Executing natural-language instructions in dynamic
environments requires robust integration of perception, planning,
and control. Conventional vision—language models (VLMs) provide
open-vocabulary recognition but often leave a perception—action
gap and fail to ensure safety under uncertainty. To address this
challenge, we propose a Vision-Language Action Model (VLAM)
that directly maps visual observations and instructions to ac-
tions through adaptive perception and uncertainty-aware control.
The algorithm leverages contrastive language-image pretraining
(CLIP)-based vision-language similarity to score candidate actions
while incorporating rule-based safety priors as a fallback mecha-
nism when confidence is low or collision risk is detected. This
design narrows the perception-action gap, maintains semantic
grounding, and guarantees stable behavior. We evaluate VLAM
in a dynamic multi-agent environment with moving obstacles. Ex-
perimental results demonstrate that the proposed method achieves
higher task success and reduced inter-agent conflicts compared to
baseline strategies.

Index Terms—Vision-Language Model (VLM), Vision-Language
Action Model (VLAM), Adaptive Perception, Dynamic Environ-
ment

I. INTRODUCTION

Acting on natural language in dynamic environments requires
an integrated loop of perception, planning, and control [1].
Moving obstacles, multi-object interactions, and goal switching
make static perception insufficient [2]. Therefore, real-time and
safe decisions are difficult without decision-time updates [3].
This paper considers instruction-conditioned control in which
language and visual observations evolve while the policy must
output actions that satisfy safety constraints. At first, adaptive
perception updates relations and risks at every timestep using
vision—language similarity to maintain decision-time ground-
ing [4]. Second, an uncertainty-aware hybrid policy falls back
to a rule-based safety prior when similarity confidence is
low or collision risk is detected [5]. Therefore, this archi-
tecture yields conservative yet robust behavior in crowded,
dynamic scenes [6]. The proposed vision-language action model
(VLAM) directly maps visual observations and language com-
mands to actions. This algorithm narrows the perception—action
gap while remaining stable under abrupt instruction changes
such as goal switching [7]. Furthermore, the model integrates
open-vocabulary scene grounding with uncertainty gating and
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Fig. 1: Proposed VLAM architecture.

a safety fallback so that action selection adapts as the environ-
ment evolves [8]. Therefore, the contributions of this paper are
as follows:

e« We propose a vision—language action architecture that
maps observations and instructions to actions in dynamic
scenes. The implementation uses discrete grid control,
stable matching, and risk-aware scoring.

o An uncertainty-aware hybrid strategy that combines vi-
sion—language similarity with a rule safety prior.

e A realistic evaluation is conducted. Success and conflicts
jointly assess safety and efficiency.

These contributions highlight the central goal of this pa-
per: to demonstrate that integrating adaptive perception with
uncertainty-aware control leads to safer and more reliable
instruction following. The following sections present the theo-
retical background, algorithmic design, and experimental eval-
uation that substantiate these claims.

II. BACKGROUND AND MOTIVATION

Vision-language models (VLMs) have enabled open-
vocabulary recognition and instruction following by aligning
image and text embeddings at scale [9]. These models allow
task grounding without task-specific retraining, which is ap-
pealing for robotics and embodied agents operating outside
curated datasets [10]. However, a perception-to-action gap often
persists [11]. Many systems compute static similarity scores
or one-shot plans from a single prompt, then rely on open-
loop execution [12]. When the environment is dynamic, this
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creates latency and brittleness [13]. Furthermore, the scene
state changes between perception and actuation, degrading
task grounding and safety [14]. Safety and efficiency further
deteriorate under uncertainty [15]. Visual occlusions, rapidly
moving obstacles, and multi-agent interactions create partial
observability and distribution shift [16]. In these conditions,
models output overconfident yet unsafe actions, unless there
is a mechanism to recognize low confidence and to defer to
conservative priors [17]. Therefore, the proposed algorithm
integrates contrastive language-image pretraining (CLIP)-based
vision—-language similarity to achieve stable instruction follow-
ing in dynamic environments.

III. ALGORITHM

The algorithm maps instructions and visual observations
to actions. It operates in a closed loop at each timestep.
Furthermore, it maintains task grounding and safety by scoring
candidate actions based on vision—language similarity and sim-
ple priors [18]. Both the visual and text encoders are provided
by CLIP. CLIP is particularly suitable in this context because
it is trained on large-scale image—text pairs and thus supports
open-vocabulary grounding [19]. This capability enables the
agent to generalize to unseen instructions and visual variations
without task-specific retraining [20]. Each agent evaluates five
candidate actions: up, down, left, right, and stay. For each
action, an image patch is cropped around the candidate position,
and its embedding is compared with label embeddings using
similarity. The value of a candidate action is defined as

V(U,) = Simg (ltarget) - >\0 Simg(lobstacle) - Ad d(a) (1)

In 1, sjmg is the cosine similarity between the patch and a text
label, liarget is the current task label, lopstacle 1S the obstacle
label. Furthermore, d(a) is the Manhattan distance from the
candidate position to the target, and A is a weighting coefficient
that scales the penalty terms for obstacle similarity and distance
cost. When confidence is below a threshold or collision risk is
detected, the policy switches to a rule-based safety controller.
The rule controller enforces collision avoidance, goal-directed
progress, and movement stability. When confidence is below a
threshold or collision risk is detected, the policy switches to
a rule-based safety controller. The combination of CLIP-based
perception and rule-based fallback provides two complementary
benefits. CLIP enables open-vocabulary grounding of instruc-
tions, which allows the agent to adapt flexibly to different goals
and objects [21]. At the same time, rule-based control ensures
adherence to stringent safety constraints, guaranteeing that the
system does not produce unsafe or unstable actions even when
perceptual confidence is low [22]. This hybrid design reduces
variance in performance and provides a safety margin against
unpredictable environmental changes. Through the integration
of semantic grounding and structured priors, the algorithm
achieves both generalization and stability.
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IV. PERFORMANCE EVALUATION
A. Evaluation Setup

The dynamic multi-agent environment consists of agents
tasked with interpreting natural language instructions and adapt-
ing their behavior accordingly. The agents must transport ob-
jects to the designated goal while avoiding dynamic obstacles
and inter-agent conflicts. Additionally, the scenario incorporates
instruction switches that occur mid-episode, compelling agents
to re-align their actions with newly assigned goals. This config-
uration offers a rigorous evaluation of both semantic grounding
and safety under uncertainty. In addition, the proposed VLAM
is compared against baseline strategies, including Random and
Greedy algorithms. This setup allows a quantitative assessment
of whether adaptive perception and safety-aware control im-
prove over naive exploration and distance-based heuristics.

B. Evaluation Results

In Fig. 2, VLAM significantly lowers conflict counts com-
pared to both the Random and Greedy algorithms. This re-
duction validates the effectiveness of uncertainty-aware gat-
ing, which switches to conservative fallback behaviors when
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risks emerge. Furthermore, VLAM not only reduces the av-
erage number of conflicts but also minimizes variance across
episodes. Consequently, it yields more consistent performance
under dynamic conditions. Fig. 3 further indicates that VLAM
improves both success rate and step efficiency. The Random
algorithm shows a low success rate, while the Greedy algo-
rithm maintains a moderate success rate initially but suffers
from unstable increases in steps. However, VLAM consistently
maintains high success rates with fewer steps. Therefore, it
demonstrates that its task grounding and safety priors jointly
support efficient and reliable decision making. Consequently,
Fig. 2 and Fig. 3 clearly show that VLAM surpasses all baseline
algorithms in both conflict avoidance and task success. These
results suggest that VLAM generates behaviors that are not only
safer but also more generalizable than the other algorithms.

V. FUTURE WORK AND CONCLUSION

This paper proposes VLAM, which directly maps natural-
language instructions to actions in dynamic multi-agent envi-
ronments. By integrating adaptive perception with uncertainty-
aware control, the proposed algorithm effectively narrows
the perception—action gap. Furthermore, experimental results
demonstrate that VLAM achieves both high success rates and
low conflict counts to maintain efficiency and safety under
dynamic conditions. Nevertheless, several limitations remain.
The current evaluation is constrained to a discrete grid envi-
ronment, and future work should extend VLAM to continu-
ous control domains. Furthermore, the reliance on CLIP for
similarity scoring has computational overhead that limits real-
time applications. Future research should consider lightweight
multimodal encoders or online adaptive embedding techniques.
In conclusion, this paper demonstrates that VLAM improves
perception—action integration and achieves a balance between
safety and efficiency in dynamic environments. Future re-
search directions include extending the approach to continuous
domains, improving computational efficiency in multimodal
representation. These developments will broaden the practical
applicability of VLAM, and they enable real-time deployment
in autonomous driving and robotic control.
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