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Abstract—The advancement of smart factories and multi-stage
logistics has accelerated the need for efficient and adaptive coordi-
nation of autonomous mobile robots (AMRs). While most existing
research has focused on homogeneous automated guided vehicles
(AGVs) systems, the control of heterogeneous AMRSs remains
underexplored. This paper proposes a multi-agent reinforcement
learning (MARL)-based control framework tailored for hetero-
geneous AMRSs in smart factory environments. The framework
incorporates AMR-specific characteristics such as field of view
(FOV) into the observation space and models decision-making
using a multi-discrete action structure with action masking to
ensure feasibility. The reward function promotes efficient task
execution by encouraging successful pickup, delivery, and goal-
directed movement. Simulation results demonstrate that the
proposed approach achieves stable learning, improves delivery
completion rates, and reduces task execution time, validating its
effectiveness in heterogeneous and complex factory settings.

Index Terms—Autonomous mobile robots, heterogeneous robot
systems, smart factory, multi-agent reinforcement learning.

I. INTRODUCTION

In modern manufacturing, the expansion of smart factories
and the growth of multi-stage logistics have increased the
demand for adaptability in diverse operational settings. Au-
tonomous mobile robots (AMRs), offering greater flexibility
in navigation compared to automated guided vehicles (AGVs),
have emerged as a suitable solution for such complex environ-
ments.

Path planning has been a central topic in multi-agent sys-
tems [1]. Recent studies have applied reinforcement learning
to multi-AGV control [2], [3], yet most assume homoge-
neous AGVs. In practice, smart factories demand coordination
among heterogeneous AMRs with varying sizes, speeds, and
task volumes. However, research in this direction remains
insufficient. To address this, this paper proposes a multi-
agent reinforcement learning (MARL)-based control frame-
work for heterogeneous AMRSs in smart factory environments.
The proposed approach explicitly incorporates AMR-specific
features such as field of view (FOV) into the control process,
while leveraging a multi-discrete action space to represent the
complexity of decision-making [4]. This design enables the
framework to more accurately reflect AMR characteristics and
enhance coordination performance in heterogeneous settings.
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Fig. 1: Smart factory simulation initial environment and sce-
nario example.

II. System MoDEL

In this study, we consider a 12 x 20 grid-based smart factory
environment as illustrated in Fig. 1. The agent set is defined
as A ={n; | i=12,...,N,} with N, =3, consisting of
two type-Al agents (A1, Aly) and one type-A2 agent (A21).
The task set is given as .7 = {t; | j = 1,2,...,N;} with
N; =12, where type-T1 tasks (size 2 x 1) can only be executed
by type-Al agents, while type-T2 tasks (size 1 x 1) can be
executed by both type-Al and type-A2 agents. Each task has
a designated destination 2 = {A, B}, and agents transport tasks
from predefined pick-up zones to their destinations.

The global state at time ¢ is defined as
st = {fo,f1,---,fn—1}, where each feature plane f; encodes
agent positions, type-T1 and type-T2 tasks with statuses
pending or assigned, and destinations A and B. This global
state s;, with Ny = 14 feature planes, is provided to the critic
network for centralized training.

The local observation of agent i is o) = {f{, f1,... 7f]"\,rl},
where each f,i represents the same categories of information
restricted to its field of view (Fig. 2(a)). The N, = 13 feature
planes include the agent’s position, movable cells, nearby
agents, and task and destination locations. Type-A1l and Type-
A2 agents observe 6 X 6 and 5 x 5 windows, respectively, and
perform decentralized execution, while the critic utilizes s;
(Fig. 2(b)).

The action space is formulated as a multi-discrete struc-
ture. The action of agent i/ at time ¢ is denoted by a =

02 imi K .
(a;",a;”,...,a"™"), where a;" represents the k-th action com-
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Fig. 2: Local observation size and framework. (a) AMRs with
FOV. (b) Heterogeneous MARL framework in smart factory.

TABLE I: Type-Al agent multi-discrete action.

Component | Range | Description

Action type [0-4] Stop, Move 1 cell, Pick up, Deliver, Queue
Move 1 cell direction | [0-3] East, West, South, North

Pickup type [0-1] Pick up type-T1 task, type-T2 task
Delivery type [0-1] Deliver to destination A or B

Queue direction [0-4] Stop, East, West, South, North

TABLE II: Type-A2 agent multi-discrete action.

Component | Range | Description

Action type [0-5] Stop, Move 1 cell, Move 2 cells, Pick up, Deliver, Queue
Move 1 cell direction | [0-3] East, West, South, North

Move 2 cell direction | [0-3] East, West, South, North

Pickup type [0-1] Pick up type-T1 task or type-T2 task

Delivery type [0-1] Deliver to destination A or B

Queue direction [0-4] Stop, East, West, South, North

ponent and m; denotes the total number of components for
agent i. For type-Al agents, the action space is defined as
m; =5 with dimensions [5,4,2,2,5], while for type-A2 agents
it is m; = 6 with [6,4,4,2,2,5], as shown in Table I and
Table II. To ensure feasibility, action masking restricts type-
Al agents to prioritize type-T1 task, whereas type-A2 agents
are limited to type-T2 task.
The reward is defined as follows:

R(l) _ Rpickup(t) +Rdelivery([) +Rm0VE(t) 6

A1) — BAr if a type-Al agent succeeds in x,
2(1) — BAr  if a type-A2 agent succeeds in x, (2)
0 otherwise,

RO () — {y if the agent moves closer to pickup/delivery,

R*(t) =

0 otherwise. @)

where R(t) is the immediate reward at time #, com-
posed of pickup, delivery, and movement terms. For x €
{pickup, delivery}, R*(t) provides success rewards r{!(¢) or
rj?z(t) depending on the agent type, penalized by elapsed time
At with coefficient B > 0. In pickup, At denotes waiting time
until success; in delivery, it represents duration from pickup
to completion. R™°V¢(¢) grants a shaping reward y > 0 when
the agent approaches its target.

III. PERFORMANCE EVALUATION

The proposed heterogeneous AMR control model was
trained over 500 episodes. As shown in Fig. 3, both episode
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Fig. 3: Training performance results.

and team rewards exhibited a gradual upward trend, indicating
stable policy optimization. From around the 400th episode,
all tasks were consistently completed, as confirmed by the
convergence of the delivery completion rate. Moreover, the
decreasing episode length shows that tasks were executed more
efficiently as training progressed. These results demonstrate
that the proposed MARL-based framework effectively derives
robust control strategies in complex smart factory environ-
ments.

IV. CoNcLUSsION

This paper proposed a MARL-based control framework for
heterogeneous AMRS in smart factory environments. By in-
corporating AMR-specific features such as FOV and adopting
a multi-discrete action space, the framework was designed to
better reflect the diverse characteristics of AMRs and enhance
coordination performance. Experimental results confirmed that
the proposed approach enables efficient task completion and
improved adaptability in complex environments.

Future work will focus on extending the framework to more
diverse factory layouts and operational conditions, as well as
comparing its performance with alternative MARL algorithms
to further validate its effectiveness.
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