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Abstract—Reliable indoor wireless connectivity is essential for
building management systems and smart city infrastructure.
Wireless smart ubiquitous network, based on the IEEE 802.15.4g
standard, provides low-power long-range communication, but
performance degrades in corridors due to periodic ripples in
the received signal strength indicator (RSSI) caused by multi-
path. Existing propagation models often fail to capture these
fluctuations, leading to a large prediction error. This paper
presents RSSI measurements at 917.1 MHz under frequency-shift
keying (FSK) and orthogonal frequency-division multiplexing
(OFDM) schemes and proposes reflection-aware path loss models
whose coefficients are optimized via the soft actor-critic learning
algorithm. The results show a significantly lower error in RSSI
predictions, supporting more reliable indoor Internet of Things
(IoT) planning.

Index Terms—Wi-SUN, path loss model, indoor wireless chan-
nel, ITU-R P.1238, reinforcement learning, RSSI prediction

I. Introduction

Stable wireless links are a prerequisite for indoor applica-
tions in building management systems (BMS), smart metering,
energy monitoring, and smart city infrastructure [1], [2]. In
such environments, wireless networks must guarantee high
reliability, low latency, and extended coverage to support
mission-critical services such as automated lighting control,
HVAC management, real-time fault detection, and energy-
efficient operations. Traditional solutions often face difficulties
in achieving these requirements due to harsh propagation
environments inside buildings. Corridors, mechanical rooms,
underground spaces, and other indoor layouts frequently in-
troduce extensive multipath fading, reflections from metallic
surfaces, and diffraction around obstacles, leading to strong
fluctuations in received signal strength (RSSI) and ultimately
resulting in unstable wireless connectivity. [3], [4].

To address these challenges, the wireless smart ubiquitous
network (Wi-SUN), built upon the IEEE 802.15.4g standard,
has emerged as a promising solution. Wi-SUN provides a low-
power, long-range wireless communication platform primarily
operating in the sub-GHz industrial, scientific, and medical
(ISM) band [5]. With a typical transmission power of around
20 mW, Wi-SUN enables coverage from several hundred me-
ters up to multiple kilometers, depending on the deployment
environment. This range extension, coupled with low energy
consumption, makes Wi-SUN particularly attractive for large-

scale Internet of Things (IoT) deployments in smart grids,
intelligent transportation systems, and building automation.

In February 2025, the Wi-SUN Alliance released the field
area network (FAN) 1.1 specification, adding flexible modu-
lation options—frequency-shift keying (FSK) and orthogonal
frequency-division multiplexing (OFDM)—to meet diverse
deployment needs. OFDM is resilient to frequency-selective
fading in multipath environments, while FSK provides ro-
bust narrowband performance with simpler implementation.
Additional features include carrier-sense multiple access with
collision avoidance (CSMA/CA), frequency hopping (FH) for
interference mitigation, and an IPv6 stack with the Routing
Protocol for low-power and lossy networks (RPL) [6], [7].
Together, these capabilities enable scalable, interoperable de-
ployments, positioning Wi-SUN as a core technology for smart
cities and building management [8].

Despite these strengths, indoor propagation remains a major
challenge. Sub-GHz signals penetrate walls better than higher-
frequency bands but still suffer from RSSI fluctuations due
to repeated reflections from walls, ceilings, and floors [9].
In corridor settings, standing wave patterns create deep fad-
ing poorly captured by conventional models. Widely adopted
references such as ITU-R P.1238 and WINNER II fail to
account for these effects, producing large prediction errors that
hinder IoT planning. [10], [11]. To overcome these limitations,
more accurate and adaptive propagation models are needed.
Data-driven methods, especially reinforcement learning (RL),
provide a promising approach by continuously optimizing
parameters from empirical feedback.

This work addresses these issues with three contributions.
• An empirical study of RSSI behavior for OFDM and FSK

in a corridor setting.
• A RL calibration framework using the soft actor–critic

(SAC) algorithm to tune the ITU-R P.1238 coefficients.
• Evidence of improved RSSI prediction accuracy over

ITU-R P.1238 and WINNER II.

II. Related Work
A. Indoor Propagation Models for Sub-GHz IoT

A wide range of indoor propagation models have been
developed to characterize the behavior of the wireless channel
and support the deployment of IoT systems. Among them,
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Fig. 1. Node deployment layout in the corridor environment.

the ITU-R P.1238 model has become a widely accepted
reference due to its simple formulation and the availability
of empirical coefficients tailored to various types of building
such as residential, office and commercial environments [10].
Its frequency- and distance-dependent structure makes it easy
to apply in preliminary planning studies.

In contrast, the WINNER II channel model provides a richer
set of parameters, including fading distributions, delay spread
statistics, and angular dispersion across multiple scenarios and
frequencies [11]. This flexibility has made WINNER II highly
influential in broadband wireless evaluations and channel
emulation. However, its calibration largely targets frequency
bands above 2 GHz, and little validation has been performed
for sub-GHz IoT deployments, particularly in elongated or
industrial environments.

Both ITU-R P.1238 and WINNER II share a common limi-
tation: they do not explicitly model periodic fluctuations in re-
ceived signal strength caused by repeated multipath reflections
in corridor-like structures [12], [13]. As a result, predictions
often diverge from empirical measurements when applied to
low-frequency IoT links, underscoring the need for enhanced
models that incorporate corridor-specific propagation effects.

B. RL for Propagation Model Calibration
RL has recently been introduced as a powerful tool for wire-

less communication research, offering the ability to optimize
the behavior of the system under uncertain and time-varying
conditions. Previous studies have applied RL to tasks such
as adaptation of transmission power, spectrum allocation, and
routing optimization [14]–[17]. These applications highlight
the potential of RL to complement traditional model-based
approaches by learning directly from interaction with the
environment.

Advanced RL algorithms suited for continuous control prob-
lems, including SAC and the deep deterministic policy gradi-
ent (DDPG), have shown strong performance in optimizing
system parameters in complex environments [18], [19]. SAC,
in particular, leverages entropy-based regularization to balance
exploration and exploitation, thereby providing improved con-
vergence stability.

Despite this progress, most of the RL research in wireless
networks has remained focused on network-level control and
resource management [20]. Only limited efforts have explored
the use of RL to refine propagation models themselves.
Specifically, learning correction terms from measurement data
to capture multipath corridor-specific ripples remains largely
unexplored [21]. Bridging this gap opens new opportunities for
data-driven propagation modeling, enabling models that adapt

Fig. 2. TX and RX setting for channel measurements.

TABLE I. Hardware specifications and PHY configurations
used in measurements

(a) Hardware platform specifications
Parameter Specification

Transceiver EFR32FG25 (Silicon Labs)
Main board BRD4002A (Silicon Labs)
Transmission power 16 dBm

(b) Modulation scheme and channelization
Modulation Center frequency Channel spacing

OFDM 917.1 MHz 200 kHz
FSK 917.1 MHz 200 kHz

to environment-specific channel characteristics rather than rely
solely on generalized empirical formulas.

III. Experimental Setup and Measurement-Based
Modeling

A. Indoor Corridor Measurement Environment
The measurement campaign was conducted in the corridor

of Woncheon Hall, Ajou University, with the objective of
analyzing sub-GHz propagation in a controlled indoor setting.
The corridor is 100 m long and 2 m wide, and includes a hall-
like widening of approximately 10 m located around the 20 m
mark, as illustrated in Fig. 1. All interior surfaces—walls,
ceiling, and floor—are reinforced concrete, producing strong
reflections and pronounced multipath fading.

The transmitter (TX) and receiver (RX) nodes were mounted
on tripods at a height of 1.4 m above the floor to ensure
consistent antenna placement and to minimize body-shadow
effects as illustrated in Fig. 2. The RX points were positioned
as shown in Fig. 1. Point 1 maintained a line-of-sight (LoS)
link to the TX, whereas points 2–5, deployed along the
corridor at 13 m intervals, operated under non-line-of-sight
(NLoS) conditions. This layout was designed to emphasize
the reflection and diffraction effects commonly observed in
corridor-type indoor channels.

B. Hardware Platform and PHY Configurations
The experiments employed EFR32FG25 transceivers (Sili-

con Labs) mounted on BRD4002A mainboards with a transmit
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Fig. 3. Comparison of RSSI between FSK and OFDM across
measurement points.

power of 16 dBm (Table I(a)). The devices comply with the
IEEE 802.15.4g standard, ensuring compatibility with Wi-
SUN FAN deployments.

For a fair comparison, two representative Wi-SUN PHY
modes were selected: (i) OFDM Option 4 (MCS 4) and (ii)
FSK, both operated at 917.1 MHz with a channel spacing of
200 kHz (Table I(b)).

At each RX point, 100 RSSI samples were recorded under
identical conditions. The median was taken to suppress instan-
taneous fading fluctuations and to obtain a statistically stable
representation of the propagation environment. This dataset
provided the baseline for the PHY-level performance analysis
and also served as input to the RL-based path loss calibration
described in Section IV.

C. Comparative Analysis of PHY Mode Performance
Based on the measurement results, we analyze the perfor-

mance gap between the two representative PHY modes in
terms of RSSI. Fig. 3 presents the RSSI distributions observed
at all receiver points. Contrary to the common expectation
for multipath-rich corridors, our measurements show that the
single-carrier (FSK) mode yields higher median RSSI than the
multi-carrier (OFDM) mode at most receiver positions, with
a particularly large gap at point 2.

In addition, the RSSI distributions of OFDM exhibit wider
spreads and deeper fades compared to FSK. This counter-
intuitive behavior can be explained by the interference-rich
nature of the deployment environment. Strong in-band and
adjacent channel interference, combined with residual carrier
frequency and phase errors, generates intercarrier interference
(ICI) that simultaneously degrades many OFDM subcarriers.
In addition, the inherently high peak-to-average-power ratio
(PAPR) of OFDM forces transmit power back-off, which re-
duces the effective link budget relative to the constant-envelope
FSK scheme. As a result, the expected advantage of OFDM
in mitigating frequency-selective fading is overshadowed by
its vulnerability to interference and hardware impairments,
whereas FSK remains comparatively robust under such condi-
tions.

In summary, the measured ranking between PHYs in this de-
ployment is interference-limited rather than purely multipath-

limited: FSK outperforms OFDM in most locations, whereas
OFDM’s inherent resilience to multipath fading does not trans-
late into higher RSSI under strong interference. This motivates
refined propagation and planning models that account for
interference and hardware-impairment terms in addition to
multipath.

D. ITU-R Path Loss Model Calibration via Coefficient Opti-
mization

The baseline model used in this study is the ITU-R P.1238
indoor path loss model, which is expressed as [10]:

PLITU-R(d, f ,n f ) = 20log10( f )+N log10(d)+L f (n f )+C,
(1)

where PL denotes the path loss in dB, f is the frequency
in MHz, d is the transmitter–receiver distance in meters, N
is the distance power loss coefficient, n f is the number of
floors between nodes and L f (n f ) represents floor penetration
loss. The term C is a constant offset that compensates for
empirical fitting. In the original ITU-R model for indoor office
environments, it is typically set to -28 dB.

Although this model captures generalized indoor propa-
gation behaviors, it lacks adaptation to the corridor-specific
fading dynamics previously discussed in Section II-A. These
effects introduce systematic deviations between predicted and
measured RSSI values, which degrade the accuracy of con-
ventional planning models.

To address this, we do not introduce a new path loss formu-
lation but instead retain the ITU-R model structure and aim
to improve its accuracy through empirical calibration. Specif-
ically, we optimize two key coefficients—N and C—based on
RSSI measurements collected in the corridor environment of
the Woncheon Hall, Ajou University. This is achieved using
the RL-based framework introduced in Section IV, where the
agent learns to minimize the RSSI prediction error.

This data-driven coefficient optimization enables the clas-
sical ITU-R model to more precisely reflect propagation
characteristics in sub-GHz corridor scenarios, without altering
its analytic form. As a result, the calibrated model can offer
improved performance in practical deployment planning for
indoor Wi-SUN systems.

E. Measurement Dataset for RL Calibration

A dedicated dataset D was constructed from the corridor
measurements described in Section III-A. Each record consists
of transmitter and receiver coordinates along with the median
RSSI measured under specific PHY and visibility conditions.
The dataset was explicitly designed as input for the RL-based
calibration of the ITU-R model. Formally, each entry can be
expressed as a tuple:

(Ptx, Prx, m, f , n f , r̃), (2)

where Ptx and Prx denote the two-dimensional transmitter and
receiver coordinates in meters. The mode variable m represents
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the PHY-layer transmission scheme and the LoS condition,
defined as:

m ∈ {LoS/FSK, LoS/OFDM, NLoS/FSK, NLoS/OFDM} ,
(3)

r̃ denotes the median RSSI aggregated at each receiver loca-
tion; f and n f follow the definitions in Section III-D.

To ensure statistical diversity, approximately 300 receiver
positions were randomly sampled along the corridor. For
each position, independent tuples were generated across all
four PHY/visibility conditions, thereby forming a dataset that
comprehensively reflects environmental-specific propagation
variability. This construction ensures sufficient state-space
coverage for SAC training.

The preprocessing steps consisted of the following:
1) Outlier suppression at each point using an IQR-based

method,
2) Median aggregation to obtain r̃,
3) Normalization of coordinates to SI units (meters),
4) Train/validation split by spatial locations to prevent data

leakage.

D =
⋃{

(Ptx, Prx, f , n f , r̃)i
}

m . (4)

IV. RL-Based Path Loss Model Correction Using SAC
A. MDP Formulation for Path Loss Calibration

The calibration problem is formulated as a Markov decision
process (MDP), where the agent aims to optimize the coeffi-
cients of the ITU-R P.1238 path loss model.

• State: st = [ f , d, n f ], where f is the carrier frequency in
MHz, d is the Euclidean distance between the transmitter
and receiver, and n f is the floor separation.

• Action: at = [N,C], where for each scenario m in Eq. (3),
the policy π(m) learns a global pair (N(m),C(m)) that
remains fixed within that scenario.

• Reward: The reward is defined as the negative mean
squared error (MSE) between predicted and measured
RSSI values:

Rt =−MSE
(
PLproposed(d, f ,n f ;N,C), r̃

)
. (5)

This formulation enables the RL agent to directly minimize the
RSSI prediction error while preserving the analytical structure
of the ITU-R model.

B. SAC-Based Framework Description
The SAC algorithm optimizes a stochastic policy in an

off-policy manner by updating an actor and two critic net-
works [18]. Its learning objective augments the expected return
with an entropy term, with a temperature α (automatically
tuned) to balance exploration and exploitation. In our offline
setting, empirical RSSI measurements define a fixed dataset
of transitions {(st ,at ,rt ,st+1)} collected without further envi-
ronment interaction, which is stored in a replay buffer.

Fig. 4 describes the proposed calibration pipeline. A state st
is sampled from the dataset, where st encodes the propagation
condition (e.g. carrier frequency f , distance d, floor separation
n f , and the PHY/visibility mode m). The policy network

Fig. 4. Proposed RL framework for ITU-R model correction
using SAC.

TABLE II. RL parameters for SAC-based calibration

Parameter Value

Discount factor (γ) 0.99
Learning rate (η) 3×10−4

Batch size 512
Replay buffer size 106

Total training steps 5×105

πφ (a|s) (actor) outputs a pair of coefficients at = (N,C), which
were applied to the ITU-R model to produce a predicted
RSSI. This prediction is compared with the measured RSSI to
calculate the reward rt . The transition (st ,at ,rt ,st+1) is added
to the buffer. Twin critic networks Qθ1 and Qθ2 (with target net-
works) are updated to estimate action values under the current
policy, and the actor is then updated to maximize the entropy-
regularized objective. For numerical stability, the continuous
action (N,C) is squashed and rescaled to predefined valid
ranges. Through these iterations, the agent learns coefficients
that minimize the prediction error while preserving the analyt-
ical structure of the ITU-R model. The key hyperparameters
used for training are summarized in Table II. To reduce
sampling bias, mini-batches are stratified across distance bins
and LoS/NLoS groups, and rewards are normalized with a
running mean/variance to stabilize critic targets. We also apply
a mild ℓ2 regularization on network weights and a small
penalty on large coefficient updates ∆(N,C) to discourage
oscillatory policies during offline training.

V. Performance Evaluation

A. Convergence and Coefficient Optimization

For baseline comparison, the ITU-R P.1238 model was
configured using the recommended parameters for office envi-
ronments, with a distance exponent N = 30 and an offset term
C =−28 dB. The WINNER II office model was also evaluated
using the standard coefficients for indoor environments [11].
The general form of the WINNER II path loss model is
expressed as:

PL(d, f ) = A · log10(d)+B+C · log10

(
f
5

)
, (6)
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Fig. 5. Policy loss convergence during training.

TABLE III. Optimized parameters (N,C) for the proposed
model in four scenarios

Scenario N C [dB]

LoS, FSK 17.890 −34.020
LoS, OFDM 20.560 −31.720
NLoS, FSK 28.020 −23.110
NLoS, OFDM 30.170 −13.320

where d is the transmitter-receiver separation in meters and f
is the center frequency in GHz. The coefficients A, B, and C
differ depending on the propagation condition:

• LoS: A = 18.7, B = 46.8,C = 20.0
• NLoS: A = 20.0, B = 46.4,C = 20.0

Although optimized for office environments, these coefficients
were directly applied to the sub-GHz (917.1 MHz) scenario
for comparison.

The proposed RL-based calibration framework was vali-
dated using the measurement dataset obtained from controlled
corridor experiments with both FSK and OFDM modes. Fig. 5
illustrates the convergence of policy loss during SAC training.
Although minor fluctuations were observed in the early stages
due to stochastic sampling, the policy loss steadily decreased
and converged after approximately 5× 105 time steps. This
convergence behavior confirms that the SAC agent successfully
learned an optimal policy to minimize the RSSI prediction
error through data-driven coefficient optimization. The smooth
convergence trend also indicates the stability of the learning
process and the robustness of the chosen hyperparameters.

The optimized path loss coefficients derived from the
SAC-trained policy are summarized in Table III. These
coefficients—N (distance power loss exponent) and C (constant
offset)—were independently learned for each communication
scenario defined in Eq. (3). In particular, NLoS cases yielded
higher values N, which aligns with theoretical expectations
due to increased attenuation and severe multipath dispersion
in obstructed environments.

Fig. 6. RSSI comparison of measurement, ITU-R, WINNER
II, and optimized model (LoS).

Fig. 7. RSSI comparison of measurement, ITU-R, WINNER
II, and optimized model (NLoS).

B. Model Comparison and Result Analysis

In order to evaluate the effectiveness of the optimized
model, its performance was compared with two widely adopted
indoor path loss models, ITU-R P.1238 and WINNER II
(Office). Fig. 6 and Fig. 7 depict the RSSI prediction results
for the LoS and NLoS scenarios, respectively. The empirical
RSSI measurements are represented in the form of boxplots
and are accompanied by prediction curves obtained from the
three models under consideration.

In the LoS case, as shown in Fig. 6, the proposed model is
closely aligned with the empirical data for both the FSK and
OFDM modulations. In contrast, the ITU-R model consistently
overestimates path loss, leading to overly pessimistic predic-
tions, particularly in OFDM transmissions, where frequency
selectivity is more pronounced. In the NLoS case, illustrated
in Fig. 7, the RL-optimized model provides an accurate repre-
sentation of steep signal degradation as well as non-linear loss
patterns that arise from multipath propagation and shadowing.
However, both ITU-R P.1238 and WINNER II fail to capture
the severity of the attenuation, producing higher RSSI values
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than those observed in the measurements. These results suggest
that the proposed RL-calibrated model not only surpasses ITU-
R P.1238 in terms of accuracy but also generalizes better
than the WINNER II formulation, particularly in corridor-type
NLoS scenarios where complex multipath effects dominate
signal propagation.

To further validate these observations, we computed the
MSE between the empirical median RSSI and the model
predictions, where the error was first calculated at each mea-
surement distance and then averaged over all distances. In the
LoS group, ITU-R P.1238 exhibited a large average error of
556.93, while WINNER II reduced this to 119.03. However,
the proposed model achieved an MSE of only 3.26, corre-
sponding to a reduction of 99.42 % and 97.26 % compared to
ITU-R and WINNER II, respectively. In the NLoS group, ITU-
R showed an error of 98.99, and WINNER II diverged further
with 395.80. The proposed model reduced this to just 8.43,
which translates to an improvement of 91.48 % and 97.87 %
over ITU-R and WINNER II, respectively.

These results confirm that the RL-calibrated framework
substantially reduces prediction errors under both LoS and
NLoS conditions, highlighting its robustness against severe
multipath fading. Furthermore, the findings demonstrate that
classical models, originally optimized for higher-frequency
scenarios, fail to generalize to sub-GHz corridor deployments.
In contrast, the proposed approach adapts effectively through
measurement-driven learning, thereby achieving both accuracy
and generalization across diverse indoor environments.

VI. Conclusion
This study proposed a RL-based method for calibrating the

ITU-R P.1238 path loss model in sub-GHz indoor corridor
environments. Using optimization of the model parameters
through the SAC algorithm, the proposed approach improves
the accuracy of RSSI prediction while preserving the ana-
lytic structure. Empirical measurements in OFDM and FSK
modes under both LoS and NLoS conditions demonstrate
that the learned parameters effectively captured environment-
specific fading characteristics. Compared with baseline models
such as ITU-R and WINNER II, the proposed RL-calibrated
model consistently achieves lower RSSI prediction errors in all
test scenarios, validating its applicability to realistic corridor
environments. In particular, calibration achieves substantial
error reductions without altering the functional form of ITU-
R or introducing site-specific features beyond (N,C), thus
preserving interpretability and simplicity of deployment.
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