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Abstract—Reinforcement learning (RL) has shown remarkable
success in solving complex decision-making problems; however,
it still suffers from fundamental limitations such as low sam-
ple efficiency, sparse rewards, and poor generalization. Recent
advances in large language models (LLMs) have introduced
new possibilities for overcoming these challenges by enhancing
multiple components of the RL pipeline. This survey provides
a comprehensive overview of LLM-augmented reinforcement
learning (LLM-RL), highlighting the ways in which LLMs con-
tribute to reward design, exploration, planning, state and action
representation, policy learning, and generalization. We categorize
integration strategies, analyze representative frameworks, and
discuss key application areas including robotics, gaming, and
virtual environments. Finally, we discuss current limitations,
open research challenges, and future directions to highlight
the potential synergy between LLMs and RL in building more
general and adaptable autonomous agents.

Index Terms—Reinforcement learning, Large language models,
Reinforcement learning, Reward shaping, Generalization, Artifi-
cial intelligence

I. INTRODUCTION

In the field of artificial intelligence (AI), reinforcement
learning (RL) has made remarkable progress over the past
several decades, contributing significantly to solving a variety
of complex problems. Notably, Google DeepMind’s AlphaGo
defeated a world champion in the game of Go, and the
Deep Q-Network (DQN) achieved human-level performance
on Atari games [1], [2]. These successes have demonstrated the
potential of RL in a wide range of domains, including games,
robotic control, autonomous driving, and financial trading [3],
[4]. RL agents learn optimal behavioral policies by interacting
with their environments via trial and error, thus acquiring goal-
directed behavior without explicit programming.

Despite these successes, traditional RL methodologies still
face several fundamental limitations. First, RL typically suffers
from low sample efficiency, requiring massive amounts of data
and interactions with the environment to learn effectively. In
real-world scenarios, collecting such extensive data may be
impractical or even hazardous. Second, in environments with
sparse rewards, agents often struggle to find meaningful reward
signals, making effective exploration extremely challenging.
Third, constructing accurate environment models or reward
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functions is notably difficult in complex and dynamic real-
world settings [5]. Lastly, policies optimized for specific train-
ing environments often fail to generalize to new or unseen
environments, presenting a critical limitation. These challenges
remain major obstacles to the widespread adoption of RL in
practical applications.

Recently, LLMs have revolutionized not only natural lan-
guage processing (NLP), but also the broader landscape of
Al research. Pretrained on massive textual corpora, LLMs
exhibit outstanding capabilities in language understanding and
generation, reasoning, planning, and even few-shot learning,
the ability to perform new tasks given only a handful of ex-
amples [6]. These advanced cognitive abilities offer promising
opportunities to address the long-standing issues of traditional
RL and enable the development of more powerful and flexible
Al agents. LLMs can provide prior knowledge about environ-
ments, understand complex instructions, generate action plans,
and even create reward signals, significantly enhancing the
learning efficiency and generalization capability of RL agents
by integrating at multiple stages of the RL process.

This survey provides a comprehensive review of recent ad-
vances in LLM-augmented RL. Specifically, it examines how
LLMs can overcome the inherent limitations of conventional
RL and pave the way for a new paradigm in Al Section II
introduces the fundamental concepts and key algorithms of
RL, highlighting the primary challenges faced by traditional
RL. Section III categorizes and explains various approaches
for integrating LL.Ms into different components of RL, such as
reward design, exploration, representation, and policy learning.
Section IV presents major applications and real-world case
studies of LLM-augmented RL, demonstrating its effective-
ness. Finally, Section V discusses ongoing challenges and
outlines promising directions for future research. This survey
aims to provide insights into the synergy between LLMs and
RL, thereby advancing understanding and fostering further
research in this rapidly evolving field.

II. FUNDAMENTALS OF TRADITIONAL REINFORCEMENT
LEARNING

RL is a machine learning paradigm in which an agent
interacts with its environment and learns an optimal behavioral
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policy through trial and error. In this process, the agent
takes an action in a given state, receives a corresponding
reward from the environment, and transitions to a next state.
The ultimate objective of RL is to discover a policy that
maximizes the agent’s expected cumulative reward over the
long term. This foundational framework underlies much of
the recent interest in combining RL with LLMs, as explored
in the following section, which introduces the fundamental
concepts and principal algorithms of traditional RL that form
the basis for understanding LLM-augmented RL. Additionally,
we clearly outline the inherent limitations and core challenges
faced by this field, which motivate the integration of LLMs
into RL frameworks.

To formalize RL problems, the Markov Decision Process
(MDP) is widely adopted. An MDP is defined by the tuple
(S,A,P,R,y) as follows: This formalism provides a structured
framework for modeling sequential decision-making under
uncertainty.

« State Space (S): The set of all possible environmental

states perceivable by the agent.

« Action Space (A): The set of all possible actions the agent
can take in a given state.

« Transition Probability Function (P(s|s,a)): The probabil-
ity that the environment transitions to state s’ when the
agent takes action a in state s.

o Reward Function (R(s,a,s’)): The immediate reward re-
ceived after transitioning from state s to state 5" via action
a.

 Discount Factor (y € [0,1)): A factor that discounts the
value of future rewards, typically chosen close to 1.

The agent’s behavior is governed by a policy (m(als)),
which specifies the probability of taking action a in state s.
While policies are often stochastic, in some cases they may be
deterministic, directly mapping states to actions. The primary
objective of RL is to find the optimal policy 7* that maximizes
the expected return, i.e., the sum of discounted future rewards.

This expected return is quantitatively expressed through the
value function:

« State-Value Function (V*(s)): The expected return when

starting from state s and following policy 7.

o Action-Value Function (Q"(s,a)): The expected return
when starting from state s, taking action a, and subse-
quently following policy 7.

These value functions satisfy recursive relationships that
capture the principle of optimality in dynamic programming,
and are recursively defined via the Bellman equation, which
forms the mathematical foundation for computing optimal
policies in RL [7].
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A. Categorization of RL Algorithms

Traditional RL algorithms can be broadly categorized into
three major paradigms: value-based methods, policy-based

methods, and actor-critic methods. In addition, RL algorithms
can be further classified as either model-based or model-free,
depending on whether an explicit model of the environment
is utilized.

1) Value-based methods: Value-based methods learn the
optimal value function and indirectly derive the optimal policy
from it. The agent typically follows a greedy policy by
selecting the action with the highest Q-value in each state.

e Q-learning: Q-learning is an off-policy algorithm, mean-
ing the policy used to generate behavior may differ
from the policy being optimized. It directly estimates the
optimal action-value function Q*(s,a) from experience.

« DON: DQN integrates deep neural networks into the Q-
learning framework to effectively approximate the value
function in high-dimensional state spaces. It achieved
human-level performance on Atari games, marking the
beginning of the deep RL era. Key techniques such as
the replay buffer and target network are introduced to
improve learning stability [8].

2) Policy-based methods: Policy-based methods learn the
optimal policy m directly, without explicitly computing a
value function. These methods are particularly suitable for
environments with continuous or very large action spaces,
and have the advantage of enabling the learning of stochastic
policies [9].

¢ REINFORCE: REINFORCE is one of the most funda-
mental policy gradient algorithms, which updates pol-
icy parameters using the total reward obtained in an
episode [10].

o Trust Region Policy Optimization (TRPO): TRPO intro-
duces the concept of a trust region to prevent overly
large policy updates and thus improves the stability of
learning [11].

e Proximal Policy Optimization (PPO): PPO reduces the
complexity of TRPO while maintaining similar perfor-
mance. It is widely used in RL applications due to its
simple implementation and robustness [12].

3) Actor-critic methods: Actor-critic methods combine the
strengths of both value-based and policy-based approaches.
The actor learns the policy to select actions, while the critic
learns the value function to evaluate the actions taken by the
actor and provides an advantage signal for policy updates.

o Advantage Actor-Critic (A2C) / Asynchronous Advantage
Actor-Critic (A3C): These are representative examples of
the actor-critic framework, significantly improving learn-
ing efficiency through parallel training. In A3C, multiple
agents interact with the environment independently to
collect experiences and asynchronously update a central
neural network, thereby accelerating the learning pro-
cess [13].

4) Model-based vs. Model-free methods:

e Model-based: Model-based methods first learn a model
of the environment (i.e., P and R), and use this model for
planning and predicting future outcomes. By generating
simulated experiences using the learned model, these
methods can improve sample efficiency. AlphaGo, which
combines deep neural networks and Monte Carlo tree
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search (MCTYS), is a prominent example of a model-based
RL system [1]. However, learning an accurate model of a
complex environment remains a fundamental challenge.

e Model-free: Model-free methods do not explicitly learn
the environment’s transition probability function P or
reward function R. Instead, agents learn policies or value
functions directly from experience obtained through in-
teraction with the environment (e.g., Q-learning, DQN,
PPO) [14], [15]. These methods are simple to implement
and easy to apply to various environments, but typically
suffer from low sample efficiency.

B. Challenges in Traditional Reinforcement Learning

As discussed in the introduction, traditional RL faces several
significant challenges when applied to complex real-world
problems. These limitations provide the core motivation for
the necessity of LLM-augmented RL.

1) Low sample efficiency: Most RL algorithms require a
large number of interactions with the environment to learn
an optimal policy. This becomes a major constraint in cases
where learning in the real physical world is expensive—such as
in robotic control—or when building high-fidelity simulation
environments is difficult.

2) Sparse rewards and reward function design: In many
real-world environments, agents only receive rewards upon
achieving specific goals, or reward signals are extremely
rare. Such sparse reward settings make it difficult for agents
to discover effective learning paths. Additionally, designing
reward functions for complex tasks is often very challenging
or even infeasible for humans, and poorly designed rewards
can lead to undesired behaviors [5].

3) Challenges in effective exploration: Agents face the
exploration-exploitation dilemma—balancing the need to ex-
plore unknown state-action spaces while exploiting known
optimal actions. Designing efficient exploration strategies is
especially difficult in high-dimensional, complex environ-
ments [16].

4) Lack of generalization capability: Traditional RL agents
are typically trained on specific environments or tasks and
lack generalization capability to new or slightly modified tasks.
This severely limits the applicability of RL in diverse and
dynamic real-world scenarios.

5) Long horizons and hierarchical planning: Many com-
plex tasks require planning over long sequences of actions
(long horizons). Traditional RL algorithms tend to learn at
the level of individual actions, making it difficult to establish
hierarchical and long-term plans.

These challenges have been the focus of much research in
RL. In the next section, we discuss how LLMs can potentially
overcome these limitations and open new horizons for RL
systems.

III. LLM-AUGMENTED REINFORCEMENT LEARNING

LLM-RL is an emerging research area that seeks to over-
come the fundamental limitations of traditional RL by lever-
aging the powerful language understanding, reasoning, and
generation capabilities of LLMs. In this section, we categorize

and describe the specific approaches by which LLMs are
integrated into various components of the RL pipeline to
enhance learning performance.

A. Reward Function Design and Generation with LLMs

In traditional RL, manually designing reward functions is
labor-intensive and prone to error. LLMs address these chal-
lenges by leveraging their strong coding abilities and extensive
domain knowledge to automatically generate and refine reward
functions. This shifts reward design from a manual process to
an automated engineering approach. Frameworks such as R*
and CARD have been proposed, in which LLMs are used to
generate and improve reward function code [17], [18].

Furthermore, LLMs can implicitly learn reward signals di-
rectly from human preferences. Direct preference optimization
(DPO) reparameterizes the reward model to directly compute
the optimal policy, enabling end-to-end training of the LLM
policy without explicitly training a separate reward model [19].
DPO optimizes the policy by directly comparing preferred
and dispreferred output pairs, effectively making the language
model itself implicitly act as a reward model. This approach
offers advantages in stability and computational efficiency,
making it particularly valuable for refining LLM behaviors in
alignment with complex human values and preferences.

B. Exploration and Planning with LLMs

Traditional RL struggles with efficient exploration and long-
term planning in complex environments. LLMs, with their vast
pretrained knowledge and powerful reasoning capabilities, help
overcome these limitations. Using LLMs, RL exploration can
shift from a fixed predefined stochastic process to an adaptive,
task-specific strategy, greatly improving both efficiency and
performance [20]. For example, LLM-Explorer utilizes the
analysis and reasoning abilities of LLMs to assess the agent’s
current policy learning state during training and adaptively
generate probability distributions for future policy exploration.
This approach has led to an average performance improvement
of 37.27 % on Atari and MuJoCo benchmarks [21].

LLMs can leverage their knowledge of the environment to
support long-term planning for goal achievement [22]. Com-
bined with hierarchical RL (HRL) and goal-conditioned RL,
LLMs can hierarchically decompose complex objectives based
on natural language descriptions (hierarchical task decompo-
sition), or provide instructions for specific states. Frameworks
such as LDSC, LGRL, and SAMA explicitly utilize LLMs for
subgoal generation and adaptive updating, thereby improving
sample efficiency and generalization [23]-[25]. In the ACE
framework, LLMs serve dual roles as both the policy actor and
value critic, while DPSDP trains an actor-critic LLM system
to enhance response quality [26], [27].

C. State/Action Representation and Reasoning with LLMs

LLMs enable the transition of state and action representa-
tions from low-level raw sensory data to high-level, semantic,
and flexible formats, facilitating more human-like understand-
ing and control. For example, LESR autonomously generates
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TABLE I: Taxonomy of LLM Integration Roles and RL Challenges Addressed

Integration Type Role of LLM

RL Challenge Addressed Representative Approach/Paper

Reward code generation, critic,
preference modeling, reward signal
refinement

Reward Function Design/Generation

Sparse rewards, difficulty of reward

3
function design R [17], DPO [19]

Task-specific exploration strategies,

Exploration ) .
ploratio learning state analysis

Low sample efficiency, exploration in

. SafeGPT [20], LLM-Explorer [21]
complex environments

Long-term planning, high-level goal

Plannin o -
& decomposition, subgoal generation

Long horizons, planning in complex

. LGRL [23], LDSC [25], SAMA [24]
environments

Summarizing states as natural
language features, task-relevant code
generation

State Representation

High-dimensional state space, lack of LESR [28], Do LLMs Build World
generalization Representations? [29]

Providing prior action distributions,
candidate action filtering, generating
mid-level actions

Action Representation/Selection

Efficient RL with LLM Priors [30],
NaVILA [31], Combining LLM
decision and RL action selection [32]

High-dimensional action space,
sample efficiency

Direct policy generation, real-time

Policy Learning/Modification policy update, co-evolution

Policy learning complexity, lack of
adaptability

LLM-as-Policy [33], CORY [34],
Policy as Code

Utilizing pretrained knowledge,

Generalization -
few-shot/zero-shot learning

Lack of generalization, adaptation to

novel environments/tasks Prompt-DT [35], TEDUO [36]

task-relevant state representation code using LLMs, which
accelerates efficient training [28]. LLMs can also summarize
the world state into goal-oriented abstractions, and recent stud-
ies have explored converting agent-environment interaction
histories into natural language text for further reasoning [29].
In addition, approaches such as NaVILA generate mid-level
natural language actions that are then executed by low-level
locomotion RL policies [31].

LLMs contribute to the flexible expansion of complex action
spaces and facilitate the filtering of candidate actions [26].
By leveraging pretrained knowledge, LLMs can provide prior
action distributions, reducing the complexity of exploration
and optimization, and thereby improving sample efficiency
[32]. Moreover, LLMs enhance reasoning capabilities through
multi-step inference processes and self-correction mechanisms.
For instance, RRO focuses on optimizing LLM agents by
emphasizing “reward escalation” during consecutive reasoning
steps [37].

D. Policy Learning and Generalization with LLMs

LLMs can directly implement or significantly influence
learned policies, leading to more flexible and adaptive
agents.“The LLM-as-Policy” paradigm treats the LLM itself
as the policy, enabling it to generate actions directly [33].
LLMs can be fine-tuned via RL to adapt to specific tasks,
and text-based user preferences can be utilized to update RL
policies in real time. The CORY framework extends LLM fine-
tuning into a sequential, collaborative multi-agent RL (MARL)
framework, enabling co-evolution and the emergence of new
capabilities [34]. Building on this, LLMs also leverage their
vast pretrained knowledge to enhance zero-shot and few-shot
generalization to new environments and tasks. For example,
prompt-based decision transformer (prompt-DT) uses few-shot
demonstrations as “trajectory prompts” to guide policy gener-
ation [35], while TEDUO utilizes LLMs as cost-effective data

augmenters and flexible generalizers, enabling the learning of
language-conditioned policies [36].

IV. Key AppLICATIONS AND CASE STUDIES
A. Robotics

In robotics, LLM-RL plays a key role in enabling robot
control via natural language commands, learning complex
manipulation tasks, and improving adaptability across diverse
environments. LLMs are used to translate human natural
language instructions into low-level actions or mid-level plans
that robots can understand and execute. For example, ELE-
MENTAL combines natural language instructions with visual
user demonstrations to align robot behaviors with user intent
[38]. NaVILA generates mid-level natural language actions
to enhance the navigation capabilities of legged robots [31].
Furthermore, LLM-based agent orchestration architectures in-
tegrate memory-augmented task planning to autonomously
manage household objects [39].

B. Gaming

In the gaming domain, LLM-RL contributes to making
agent behaviors more human-like, learning complex game
rules, and automating various aspects of game design. LLMs
are used to generate dialogue and behaviors for non-player
characters (NPCs), enriching player interaction. LLM-assisted
RL methods such as ELLM and Read and Reap Rewards
address challenges of sparse rewards and sample efficiency,
making RL agent training more effective [40], [41].

C. Simulation and Virtual Environments

LLM-RL is utilized in simulation and virtual environments
to control agent behaviors, deliver personalized user expe-
riences, and generate complex virtual worlds. LLM agents,
empowered by extensive world knowledge and reasoning
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capabilities, can achieve stronger performance compared to
traditional RL-based miniature agents. Frameworks such as
EnvGen train RL agents within environments generated by
LLMs, dynamically adapting the environment to incrementally
improve agent skills [42]. LLM-RL enables the development
of virtual agents, telepresence experiences, and multimodal
content analysis tools, providing personalized and interactive
user experiences.

V. CHALLENGES AND FUTURE RESEARCH DIRECTIONS

The field of LLM-augmented RL is still in its early
stages; while rapid progress has been made and models like
DeepSeek-R1 show impressive performance, its implementa-
tion remains complex—requiring sophisticated algorithms, re-
ward modeling strategies, and optimization techniques—which
poses difficulties for systematic research, and key challenges
persist in advancing LLM capabilities, including improving
multi-step reasoning, handling chained tasks, balancing struc-
tured prompting with flexibility, enhancing long-context re-
trieval, and integrating external tools, all of which must be
addressed for sustained development and real-world adoption.

o Reliability and Safety: The hallucination problem of
LLMs can pose significant challenges to the reliability
and safety of LLM-RL systems. LLMs may generate
factually incorrect or unfounded content, which can cause
RL agents to learn from false information or perform
unsafe actions. To address this issue, various approaches
are required, including hallucination detection based on
the latent space of LLMs, reconstructing the represen-
tation space using lightweight steering vectors such as
the truthfulness separator vector (TSV), and developing
integrated models that verify LLM responses against
context and general knowledge [43], [44].

e Data Efficiency and Bias: While the vast pretraining
data of LLMs endows them with powerful capabilities,
it can also introduce bias and present challenges in terms
of computational cost and data efficiency during RL
training. Techniques such as difficulty-targeted online data
selection and rollout replay contribute to improving the
data efficiency of LLM RL fine-tuning [45].

e Reasoning and Explainability: Understanding and ex-
plaining the decision-making processes of LLM-based
RL systems is essential for ensuring reliability and facil-
itating debugging. The adoption of LLMs has increased
the use of natural language explanations in NLP model
interpretability research; however, the faithfulness of such
explanations remains an open question.

o Computational Complexity and Cost: The high computa-
tional cost of LLMs and the management of large-scale
training data constitute major constraints for LLM-RL
systems. Although LLM-based agents can achieve strong
performance, frequent invocation of LLMs is slow and
expensive. Standard RL algorithms for LLM fine-tuning
(e.g. PPO) can also be unstable and prone to distribution
collapse due to the large discrete action space and sparse
rewards associated with LLMs.

o Unified Framework Development: The development of
general frameworks that encompass various LLM-RL

integration strategies can accelerate progress in this field.
For example, LAMARL proposes an integrated framework
that incorporates LLMs into MARL to improve coordi-
nation, communication, and generalization [23]. CoRL
aims to enhance both generative and comprehension
capabilities through a unified RL framework for unified
multimodal LLMs (ULMs) [46], [47].

VI. CoNCLUSION

This survey has presented a comprehensive overview of
LLM-RL, a rapidly emerging paradigm at the intersection of
natural language processing and decision-making. By integrat-
ing large language models into various components of the
RL pipeline—such as reward modeling, exploration, planning,
representation learning, and policy optimization—LLMs help
address long-standing challenges in traditional RL, including
sparse rewards, low sample efficiency, and limited generaliza-
tion. These models bring semantic understanding, prior knowl-
edge, and reasoning capabilities to agents, resulting in more
adaptable and effective behavior in complex environments.
Case studies in robotics, gaming, and simulation demonstrate
how LLM-RL enables natural language interaction, flexible
task execution, and personalized agent behavior.

Despite its promise, LLM-RL remains in its early stages,
facing challenges related to reliability, hallucination, bias,
computational overhead, and explainability. Addressing these
issues will require new algorithms, scalable architectures,
and unified evaluation frameworks. Nevertheless, LLM-RL
represents a significant shift in autonomous agent design,
offering a promising direction for building intelligent systems
that are generalizable, interpretable, and capable of real-world
operation.
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