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Abstract—Behavior trees (BTs) provide a hierarchical control
architecture for autonomous systems, offering modularity and
reactive behavior capabilities. However, traditional Q-learning
behavior trees (QL-BT) rely on tabular representations, which
face critical scalability challenges. This research presents a tree-
based scalable behavior task planning framework that addresses
these limitations by combining gradient-boosting trees (GBT)
for function approximation and prioritized experience replay
mechanisms. This integration leverages GBT’s generalization
capabilities and experience replay’s stability benefits, achieving
superior performance with reduced training requirements. The
framework demonstrates substantial improvements in three key
metrics: state-space exploration increases by 7.6 %, reward per-
formance improves by 17.8 %, and computational performance
improves by 110 %.

Index Terms—Behavior Trees, Task Planning, Q-learning,
Gradient Boosting Trees, Experience Replay, Function Approxi-
mation

I. Introduction

Behavior trees (BTs) provide a hierarchical control architec-
ture for autonomous systems, offering modularity and reactive
behavior capabilities. Despite these advantages, conventional
BTs require manual specification of transition conditions,
which limits their adaptability to dynamic environments.

Q-learning behavior trees (QL-BT) integrate reinforcement
learning to automate condition generation and action prioriti-
zation, enhancing environmental responsiveness [1]. However,
current QL-BT implementations rely on tabular Q-learning,
which faces critical scalability challenges. These methods
require explicit storage of all state-action pairs, resulting in ex-
ponential memory growth with increasing state-space dimen-
sionality. Furthermore, tabular approaches cannot generalize to
unobserved states or exploit similarities between related states
due to the independent treatment of each state-action pair [2].

This research presents a scalable QL-BT framework that
overcomes these limitations by combining gradient-boosting
trees (GBT) for function approximation with prioritized expe-
rience replay [3], [4]. The GBT approach builds an ensemble
of decision trees to approximate Q-values without explicit
Q-table storage, while experience replay enables efficient
learning from historical transitions. This integration leverages
GBT’s generalization capabilities and experience replay’s sta-
bility benefits, achieving superior performance with reduced
training requirements compared to conventional Q-learning
approaches.

II. Proposed Method

GBT-based Q-value Function Approximation. The frame-
work approximates Q-value functions using gradient-boosting
trees (GBT), replacing traditional tabular representations. The
Q-value function is approximated as

Q(s,a)≈ FK(s,a) = F0 +
K

∑
k=1

εhk(s,a), (1)

where FK represents the ensemble model after K boosting
iterations, ε denotes the learning rate, F0 is the initial estimate
and hk represents individual regression trees that partition the
state-action space.

The GBT model is optimized by minimizing the squared
loss function:

LGBT = E(s,a)∼D

[
(Qtarget(s,a)−FK(s,a))2] , (2)

with target Q-values defined by the Bellman optimality equa-
tion:

Qtarget(s,a) = r+ γ max
a′

Q(s′,a′). (3)

This approach provides implicit regularization through
boosting, while maintaining interpretability through tree-based
architecture. Hierarchical state-space partitioning enables effi-
cient processing of heterogeneous features and generalization
to unobserved states.

Prioritized Experience Replay Integration. Prioritized expe-
rience replay improves learning stability and sample efficiency.
Each transition receives a priority score based on the temporal
difference (TD) error magnitude:

pi = (|δi|+ εp)
α , (4)

where the TD error measures prediction discrepancy:

δi = rt + γ max
a′

Q(st+1,a′)−Q(st ,at). (5)

The sampling probability follows a normalized priority
distribution:

P(i) =
pi

∑k pk
. (6)

Importance sampling weights correct for non-uniform sam-
pling bias:

wi =

(
1

N ·P(i)

)β
, (7)
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Fig. 1: Learning curves comparing QL-BT (Table), GBT-
QLBT, and GBT-Replay models over 2,000 training episodes.

where N is the buffer capacity and β anneals linearly from 0
to 1 during training. This prioritization focuses computational
resources on high-error transitions, accelerating convergence
in sparse-reward environments.

Q-condition Generation and Tree Restructuring. Q-values
are transformed into Q-condition nodes to replace manual
conditions in behavior trees. For each action a, states with
high Q-values form the condition set:

Ca = {s ∈ S : Q(s,a)> Percentilep(Q(·,a))}, (8)

where the percentile threshold p (typically 70-90%) balances
specificity and coverage.

The behavior tree undergoes structural optimization by
reordering action nodes based on maximum Q-values:

Priority(actioni) = max
s∈Cai

Q(s,ai). (9)

This reorganization prioritizes high-return actions during
tree traversal, optimizing decision-making efficiency while
preserving the interpretable hierarchical structure required for
practical deployment.

III. Performance Evaluation

Experimental Configuration. The framework was evaluated
over 2,000 training episodes in a 20 × 40 grid-based excavation
environment. Three implementations were compared: tradi-
tional tabular Q-learning (QL-BT), GBT function approxima-
tion without experience replay (GBT-QLBT), and the proposed
GBT with prioritized experience replay (GBT-Replay).

Learning Dynamics Analysis. Fig. 1 illustrates the distinc-
tive convergence characteristics of the three approaches. The
tabular QL-BT rapidly converged to a stable reward level
of approximately 1,200. GBT-based implementations showed
greater variance, and GBT-QLBT experienced performance
degradation between episodes 1,500-1,800 due to overfitting
during periodic retraining. GBT-Replay demonstrated supe-
rior stability through experience replay, effectively preventing
catastrophic forgetting.

Performance Analysis. Table I demonstrates the synergistic
advantages of function approximation and experience replay

TABLE I: Comparative Performance Metrics

Metric QL-BT GBT-QLBT GBT-Replay

State space coverage 680 732 725
Positive Q-ratio (%) 71.6 64.5 74.2
Mean Q-value 115.40 131.45 148.21
Average reward 560.80 551.33 660.74
Decision latency (ms) 7.15 7.28 3.40
Throughput (dec/s) 140.5 140.5 294.5

integration. GBT-QLBT explored 7.6 % more states than tab-
ular approaches (732 versus 680), demonstrating enhanced ex-
ploration through generalization. However, its positive Q-ratio
decreased to 64.5 %, indicating value propagation challenges
without experience replay.

GBT-Replay achieved optimal performance across all met-
rics: highest positive Q-ratio (74.2 %), maximum mean Q-
value (148.21) and best average reward (660.74). This rep-
resents a 17.8 % reward improvement over QL-BT and 19.8 %
over GBT-QLBT. Computational efficiency improved signifi-
cantly, with GBT-Replay achieving a decision latency of 3.40
ms - a 52.4 % reduction compared to tabular implementations.
This yielded 294.5 decisions per second, doubling the through-
put of alternative methods and enabling real-time deployment.

IV. Conclusion
This research has presented a scalable QL-BT framework

that addresses the computational constraints of traditional
tabular Q-learning through the integration of GBT-based func-
tion approximation and prioritized experience replay mech-
anisms. The proposed methodology demonstrates substantial
improvements across multiple dimensions: state-space explo-
ration (7.6% increase), learning performance (17.8% reward
improvement), and computational efficiency (110% throughput
enhancement). The framework preserves the interpretability
inherent in behavior trees while achieving the computational
scalability necessary for deployment in high-dimensional state
spaces.
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