979-8-3315-5678-5/25/$31.00 ©2025 IEEE

Data-Efficient Electricity Consumption Forecasting
with a Tabular Foundation Model

Seeun Kim
Dept. Applied Artificial Intelligence,

Jungmin Lim
Dept. Applied Artificial Intelligence,

Jiyoon Byun
Dept. Applied Artificial Intelligence,

Seoul National University of Science and Seoul National University of Science and Seoul National University of Science and

Technology, Seoul, Republic of Korea
sese2121 @seoultech.ac . kr

Jeongyeon Kim
Dept. Applied Artificial Intelligence,
Seoul National University of Science and
Technology, Seoul, Republic of Korea
jy_kim@seoultech.ac.kr

Abstract—We address building-level electricity consumption
forecasting under limited data. We introduce a simple pipeline
that couples feature engineering with an electricity consump-
tion predictor comprising a tree-based model and a tabular
foundation model. A lightweight meta-learner aggregates their
outputs to exploit complementary strengths of these models. We
assess the effectiveness of the proposed approach on the KEA-
2025 dataset. Experimental results on varying training-history
lengths demonstrate that the foundation model excels in low-
data regimes, the tree-based model improves as data grow, and
the ensemble consistently achieves the best performance.

Index Terms—Electricity consumption prediction, Tabular
foundation model, gradient boosting decision tree.

I. INTRODUCTION

Electricity demand has continued to rise [1]. Accurate con-
sumption forecasting becomes important to optimize energy
resource management [2]. Because electricity use exhibits
persistent temporal structure, many methods aim to model
these time-series patterns. Autoregressive integrated moving
average (ARIMA) [3] is a prototypical example [4]. However,
such statistical models struggle with the complex, nonlinear
dynamics of electricity consumption.

To address these limitations, many studies [5]-[7] have
explored machine learning (ML) models. Tree-based models
including random forest [8] and XGBoost [9] effectively
capture nonlinear, multivariate relationships between input
variables and consumption, leading to promising performance
over statistical baselines. However, these methods typically
treat observations as independent, overlooking the sequential
structure and long-range dependencies essential for accurate
forecasting.
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With advances in deep learning (DL), numerous meth-
ods [10]-[16] have leveraged neural architectures, such as
temporal convolutional networks (TCNs) [15] and long short-
term memory (LSTM) [16], to model long-range temporal
dependencies in forecasting applications. However, DL-based
methods often require substantial training data and careful
hyperparameter tuning to avoid overfitting, which can limit
their practicality in data-scarce settings.

Recently, the success of foundation models in natural
language processing (NLP) [17], [18] and computer vision
(CV) [19], [20] has highlighted strong in-context learning,
enabling adaptation to new tasks at inference time without
parameter updates. Building on this progress, recent studies
have developed foundation models tailored to tabular [21] and
time-series [22]-[24] data, demonstrating robust forecasting
in data-scarce settings. However, despite the potential of
foundation models, their application to electricity consumption
forecasting remains underexplored.

In this work, we address building-level electricity con-
sumption prediction in data-scarce regimes. First, we per-
form feature engineering to extract derived features that are
closely related to electricity consumption. Second, we present
a simple, data-efficient pipeline that combines a gradient-
boosted tree (XGBoost) with a tabular foundation model
(TabPFN). We then train a shallow meta-learner to fuse
their outputs. The approach requires no fine-tuning of the
foundation model for data-scare scenario. Experiments on
the Korea Energy Agency’s 2025 Electricity Consumption
Prediction (KEA-2025) dataset confirm the effectiveness of
our approach. Empirically, TabPFN is strongest with short
histories, XGBoost improves as history length grows, and
the meta-learner’s predictions achieve the lowest error across
diverse data conditions.
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Fig. 1. An overview of the proposed pipeline consists of three stages: (1) data processing, which converts raw building records into training-ready data, (2)
feature engineering, which generates derived variables, and (3) an ensemble model of a gradient boosting decision tree (XGBoost) and a tabular foundation

model (TabPFN), which fits a per-building predictor for electricity consumption. The final outputs are building-wise forecasts 71, . .

II. RELATED WORK

A. Learning-based Electricity Consumption Forecasting

In [4], ARIMA [3] is combined with clustering to fore-
cast electricity consumption in university buildings. Because
ARIMA assumes linearity under stationarity, it struggles to
capture the complex patterns common in practice. In [5], XG-
Boost [25] shows promising results for electricity consump-
tion forecasting in a university building. EA-XGBoost [25],
which integrates empirical mode decomposition, ARIMA, and
XGBoost, outperforms standalone ARIMA and XGBoost. A
review of electricity consumption forecasting studies [26]
reported that no single learning-based method outperforms all
others across scenarios.

B. Deep Learning Models for Time Series Analysis

Time series analysis is a fundamental problem that includes
industrial forecasting [27] and other temporal tasks [28]-
[30] across various domains. So, numerous approaches [15],
[27], [31]-[39] have been explored. Recurrent neural net-
works(RNNs) [27], [31], [32] are commonly used to capture
long-term dependencies but suffer from limited parallelism and
difficulty with very long sequences. Temporal convolutional
neural networks [15] and its variants [33]-[36] provide large
receptive fields with improved computational efficiency. In-
spired by the success of Transformers across modalities [40]—
[43], recent studies [37]-[39] adopt attention mechanism to
model long-range dependencies in parallel.

C. Tabular Foundation Models

Foundation models such as GPT3 [17] have gained signifi-
cant attention across domains. Leveraging priors learned from

<5 T100-

large-scale data, they enable in-context learning that adapts
models to new tasks at inference time without parameter
updates. In the tabular setting, TabPFN [21] learns a prior-
data—fitted Transformer that approximates Bayesian inference
over synthetic task distributions, supporting zero-/few-shot
transfer. This paradigm has been extended to forecasting
via in-context conditioning [21] and to broader time-series
foundation models pretrained on heterogeneous temporal cor-
pora [22].

III. DATASET

We use the Korea Energy Agency’s 2025 Electricity Con-
sumption Prediction dataset (KEA-2025) to develop our fore-
casting models. The dataset contains hourly electricity con-
sumption, meteorological variables, and building metadata for
100 buildings collected from June 1 to August 24, 2024. In
this work, we use the first 78 days of data for training and the
remainder for testing.

Meteorological variables. For each building, the meteoro-
logical record comprises date—time stamp, temperature (°C),
precipitation (mm), wind speed (m/s), humidity (%), sunshine
duration (hr), and solar radiation (MJ/ m?).

Building metadata. Each building record includes seven
attributes: building number, building type, floor area (m?),
cooling area (m?), solar capacity (kW), energy storage system
capacity (kWh), and power conversion system capacity (kW).
Building types are categorized into ten classes: hotel, com-
mercial, hospital, school, others building, apartment, research
institute, department store, IDC (telephone station), and public.
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TABLE I
THE SUMMARIZATION OF ENTIRE FEATURE SET FOR BUILDING-LEVEL ELECTRICITY CONSUMPTION FORECASTING, WHICH INCLUDES RAW
METEOROLOGICAL AND BUILDING METADATA AND DERIVED VARIABLES THAT ENCODE TEMPORAL REGULARITIES, PER-BUILDING CONSUMPTION

STATISTICS, AND THERMAL-COMFORT INDICES (FFT, pTHI pTHI)
Features | Type Name | Explanation
temperature Air temperature
wind speed Outdoor wind speed
Raw Raw precipitation, humidity Rainfall amount and air humidity
building number Representation of building id
building type Representation of building type(0-9)
total area, cooling area Total area of each building and air-conditioned area
month, day, hour Month, day, and hour extracted from timestamp
Date-time week number Week of the year
time sin, time cos Sine and cosine transformation of hour to capture cyclic nature
weekend, weekday, holiday Indicators for weekend, weekday, and holidays
day hour mean Average electricity consumption by day and hour for each building
Derived hour mean Average electricity consumption by hour for each building
Statistics hour std Standard deviation of electricity consumption by hour for each building
temperature min Daily minimum temperature of each building
temp diff Difference between current temperature and daily minimum
FPT Perceived temperature, combining temperature and wind speed
Thermal comfort FTHI Temperature humidity index, reflecting human discomfort
FTHI Categorical variable based on FTH! value

IV. METHODOLOGY

A. Feature Engineering

Table I summarizes all raw and derived features used
to electricity consumption prediction. First, we encode the
date—time stamps into periodic features to capture temporal
regularities in electricity demand. Specifically, we derive vari-
ables such as day-of-week, weekend/holiday indicators, and
sinusoidal encoding.

Next, we compute per-building, hourly summary statistics
of electricity consumption on the training set using a leakage-
free historical window. These statistics account for building-
specific differences in average load and variability. We also
aggregate each building’s hourly series by day of week to
capture weekly cyclic patterns. In addition, we compute,
for each building, the daily minimum temperature and the
difference between the current temperature and that minimum.

Lastly, we extract features that describe the effects of
temperature, humidity, and wind on human thermal sensation,
which are factors closely linked to electricity consumption
patterns. To this end, we adopt the perceived temperature F'©°7
and the temperature-humidity index FTH! as done in [44].
The perceived temperature F'©’7 represents how temperature
feels to humans under different wind conditions, given by

FPT = 0.6215T + 13.12 4 (0.3965T — 11.37)2%16 (1)
where v is wind speed in km/h and T is temperature.

The temperature-humidity index FTH! quantifies heat
stress from temperature and humidity, in which larger values
indicate greater thermal discomfort and typically correspond to

higher electricity consumption. Specifically, F7H7 is defined
as

H
FTHI — 18T +32—0.55 (1 — 100) (1.8T —26) (2)

where H is humidity. Because human responses to thermal
discomfort vary nonlinearly with F7H we discretize it into
four ordinal categories and add their indicators as derived
features:

, if FTHI <68

, if 68 < FTHI <75
, if 75 < FTHI < 80
, if 80 < FTHI

THI __
cls -

3)

w NN = O

Here, 0, 1, 2, and 3 correspond to comfortable, mild discom-
fort, ~50% of people uncomfortable, and strong discomfort
for nearly everyone, respectively.

B. Electricity Consumption Predictor

Fig. 1 illustrates the overall pipeline to predict per-building
electricity consumption. The predictor comprises a tree-based
model, a tabular foundation model, and a meta-learner that
combines their outputs.

Tree-based model. We adopt XGBoost [9] as the tree-based
regressor due to its strong performance on tabular data.
XGBoost is trained to minimize mean absolute error (MAE)
between predictions and ground-truth electricity consumption.
Hyperparameters are tuned with Optuna over 30 trials using
a leakage-free, fixed-length sliding-window validation split.
After tuning, the model is refit on the training data with the
selected settings and evaluated once on the held-out test set.
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TABLE II
SMAPE (LOWER IS BETTER) FOR XGB0OOST, TABPFN, AND THEIR
STACKED ENSEMBLE ACROSS TRAINING-HISTORY LENGTHS (DAYS). THE
BEST RESULTS ARE DEPICTED IN BOLD.

TABLE 111
SMAPE (LOWER IS BETTER) FOR XGB0OST, CATBOOST, AND THEIR
ENSEMBLE ACROSS TRAINING-HISTORY LENGTHS (DAYS). THE BEST
RESULTS ARE DEPICTED IN BOLD.

Days \ XGBoost TabPFN Ensemble Days \ XGBoost Catboost Ensemble
1 15.6461 9.3280 9.0540 1 15.6461 15.8146 15.2139
7 7.5434 7.1573 7.0087 7 7.5434 9.3465 7.4607

21 6.8612 6.8973 6.6412 21 6.8612 7.0895 6.7328
50 6.4158 6.7637 6.2882 50 6.4158 6.5556 6.2537

Tabular foundation model. We employ TabPFN [21], a
prior-data-fitted Transformer trained on a large distribution
of synthetic tabular tasks to approximate Bayesian inference.
At inference time, it performs in-context learning: given a
small, leakage-free conditioning set, it predicts targets for
new samples without gradient updates. It consumes the same
feature set as XGBoost and produces 7-day-ahead forecasts.

Meta-learner. Let {x, and 9, denote the predictions from
XGBoost and TabPFN, respectively. XGBoost is trained solely
on KEA-2025, whereas TabPFN utilizes generalized prior
knowledge from large-scale pretraining. Their predictions are
therefore complementary. To exploit this, we fit a lightweight
stacking head on predictions from both models. The meta-
learner’s output ¢ takes the form

U=0afww + (1 —a)fpn+06, acl01l] 4)

where a and ( are trainable parameters initialized to 0.5 and
0.0, respectively.

V. EXPERIMENTS

A. Experimental Settings

Training data. We construct training sequences with history
lengths from 1 to 50 days and forecast the subsequent 7 days
of electricity consumption. The 1-day set contains 24 hourly
observations, whereas the 50-day set contains 1,200.

Evaluation metric. We evaluate performance using symmetric
mean absolute percentage error (SMAPE) [45]:

100 <= 2 |9 —
SMAPE — EZM (5)
n = |G+ |yl

where n is the number of observations, y; and ¢, are the
ground-truth and predicted values at time ¢, and | - | denotes
absolute value.

B. Experimental Results

Table II compares single models (XGBoost, TabPFN) and
their ensemble across training-history lengths. When training
data are scarce, TabPFN outperforms XGBoost: with 1 day
of history, SMAPE drops from 15.65 (XGBoost) to 9.33
(TabPFN), and with 7 days from 7.54 to 7.16. This advantage
reflects TabPFN’s strong prior and in-context learning, which
stabilize training with small n. As data increase, XGBoost

overtakes TabPFN: at 21 days it is slightly better (6.86 vs.
6.90), and at 50 days the gap widens (6.42 vs. 6.76), indicating
stronger task-specific fitting with more samples. The ensemble
achieves the best performance at all settings, consistently
improving over the stronger base model. These results suggest
complementary error profiles between the two models.

To analyze the ensembling effect in Table II, we train an
additional CatBoost model and ensemble it with XGBoost un-
der the same Optuna-based tuning and retraining protocol. Ta-
ble III reports the results. Compared to the XGBoost+TabPFN
ensemble, the XGBoost+CatBoost ensemble yields smaller
gains: with 1 day of history the error remains high (15.21
vs. 9.05), with 7 days it is higher (7.46 vs. 7.01), and with
21 days it is still worse (6.73 vs. 6.64). This weaker effect
is expected because XGBoost and CatBoost are both GBDT
models and thus share similar inductive biases, leading to
highly correlated errors and limited diversity. Notably, at 50
days the XGBoost+CatBoost ensemble slightly outperforms
XGBoost+TabPFN (6.25 vs. 6.29), and CatBoost alone also
surpasses TabPFN (6.56 vs. 6.76), suggesting that with suffi-
cient data TabPFN’s prior advantage diminishes.

VI. CONCLUSION

In this work, we presented a simple and data-efficient
pipeline to predict building-level electricity consumption.
First, we performed feature engineering to construct strong
features for electricity consumption modeling. We then com-
bined two complementary predictors: a tree-based model (XG-
Boost) and a tabular foundation model (TabPFN) using a
lightweight meta-learner. We validated the proposed method
on KEA-2025 dataset. Experimental results demonstrate that
our ensemble consistently attains the lowest SMAPE across
training-history lengths. Analyses describe that TabPFN excels
in low-data regimes through strong priors and in-context learn-
ing, whereas XGBoost improves as data grow by capturing
task-specific patterns; their diversity drives the ensemble gains.

Limitations and future work. Our approach relies on in-
context learning rather than explicit sequence modeling. Future
work will incorporate recurrent or transformer-based time-
series architectures to directly capture long-range temporal
dependencies.
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