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Abstract—Centralized control for uplink (UL) interference is
impractical in large-scale integrated satellite-terrestrial networks
(ISTNs). We propose a decentralized multi-agent deep reinforce-
ment learning (MADRL) solution where each user equipment
(UE), as an agent, learns a hybrid policy for joint channel
selection and power control using only local observations. Simula-
tion results validate that our approach significantly improves the
system’s performance compared to a random baseline, proving
its scalability and effectiveness for UL co-existence.

Index Terms—Integrated satellite-terrestrial networks, multi-
agent deep reinforcement learning, uplink, decentralized learning

I. INTRODUCTION

The integration of terrestrial network (TN) and non-
terrestrial network (NTN) is crucial for future connectivity,
but introduces severe uplink (UL) interference from numerous
co-channel user equipments (UEs) [1]. The dynamic nature of
NTNs makes traditional centralized management impractical
due to high signaling overhead and scalability issues [2], [3].
To address this, we propose a decentralized framework where
each UE acts as an agent that learns a hybrid policy for
joint spectrum selection and power control. Our objective is
to maximize the system’s average signal-to-interference-plus-
noise ratio (SINR) and coverage probability (CP).

II. System MobEL orF ISTN
A. Co-existence scenario case

Fig. 1 shows the co-existence system model considered in
this paper. The 3rd generation partnership project (3GPP) has
defined six TN-NTN co-existence cases, and the case adopted
in this paper is based on the frequency division duplex (FDD)
scenario where both the TN and NTN operate in the UL within
the S-band [4]. In this scenario, the NTN UL acts as the
interference victim, while the TN UL acts as the interference
aggressor.

B. Channel modeling

The channel model for this UL scenario is based on the
3GPP TR 38.821 specifications [5]. The received power of
the UL signal is formulated as

yor =k +G,+G —PL, )]
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Fig. 1. System model

where P, is the transmit power of the transmitter, G, and G; are
the antenna gains of the receiver and transmitter, respectively,
and PL denotes the path loss.

The SINR is calculated based on the desired signal power,
co-channel and adjacent channel interference, and the noise
power. The NTN UL SINR, which includes interference from
both TN ULs and other NTN ULs, is calculated as

Ye,e
Yee = N, N, ’
Ze/zl Ve, + Zuil Yeu + No
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where c is the satellite beam that receives the signal, ¢’ denotes
other NTN UEs excluding the UE transmitting the desired
signal, and y., includes co-channel and adjacent channel
interference from the NTN UL. The term of u is a TN UE,
and y. , includes co-channel and adjacent channel interference
from the TN UL. Ny is the noise signal power.

III. PROPOSED MANAGEMENT FRAMEWORK

This section details the proposed framework, which is a
fully decentralized multi-agent deep reinforcement learning
(MADRL)-based management scheme.

A. Proposed hybrid MADRL algorithm

To address the joint spectrum and power management prob-
lem in a decentralized manner, we model the system as a multi-
agent Markov decision process (MDP). The key components
of our MDP formulation are defined as follows:
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TABLE I. Environmental setup parameters

Parameter | Value
Altitude of the LEO satellite 600 km
The number of LEO beams and gNBs | 19, 20
The number of NTN and TN UEs 20, 200
SINR threshold 7, 1 dB
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Fig. 2. Reward convergence per training epoch

1) State: The system state is represented as a local obser-
vation vector for each UE agent e. The state vector is expressed
as

se(t) = {Ue(1),Ce (1), Re(1) }, 3)

where U,(t) consists of the agent’s own information, such as
its location, SINR state, and power level information. C,(r)
represents the location information of satellite beam connected
with UE e.

2) Action: Given the observed local state s,(¢), each agent
e independently determines its spectrum selection and trans-
mission power at time step ¢. The overall action of agent e is

defined as
ac(t) = {a; (1),a; (1)}, )

where the spectrum selection action @5 (t) is performed by the
DQN algorithm, and the transmission power control action
a(t) is performed by the DDPG algorithm. a3(t) is repre-
sented as a binary variable, and once spectrum allocation is
completed, af(t) is assigned with continuous values.

3) Reward: The reward function r(z) is designed to align
with the objectives of maximizing the average SINR and CP

of the overall system. It is formulated as

1 &
r(t) = WsINR * (N Z %) + Weoy * Feov, (5)

€ c=1
where 7. is the SINR of satellite beam ¢, and P.oy is the CP
defined as
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It represents the proportion of the total UEs that satisfy the

QoS requirement.

B. DON and DDPG framework

This section describes the two core components of the
proposed hybrid learning framework.

TABLE II. RL simulation parameters

Parameter | Value
Discount factor y | 0.99
Learning rate o 0.001
Batch size %4 128
Buffer size M 10,000
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Fig. 3. Average SINR and CP as increasing of UE P,

1) DON for spectrum selection: For discrete spectrum
selection, we use DQN, which approximates Q-values via a
neural network. The agent selects the action g, that maximizes
the Q-function Q(s;,a;0). To ensure stable learning in dy-
namic interference conditions, DQN utilizes experience replay
and a target network.

2) DDPG for Power Control: For continuous power con-
trol, we adopt DDPG, which employs an actor-critic architec-
ture. The actor network u(s|@*) determines a deterministic
action, while the critic network Q(s,a|69) evaluates its value.
DDPG uses target networks and adds noise to the actor’s
output for stable learning and exploration, enabling precise
and adaptive power adjustments.

IV. SIMULATION RESULTS AND ANALYSIS

The performance of the proposed algorithm is compared
against a baseline that allocates resources randomly. The
simulation is conducted in an environment where the satellite
moves at each time step. The detailed parameters for the
simulation environment are summarized in Table I, and the
hyperparameters used for training are provided in Table II.

Fig. 2 illustrates the convergence trend of the average reward
according to the training epoch for the proposed algorithm.
This convergence pattern demonstrates that the proposed al-
gorithm successfully learns a stable optimal policy that max-
imizes both the SINR and the CP in the given environment.

Fig. 3 shows the average SINR and CP of the system
as a function of the UE’s maximum transmit power. While
the performance of both algorithms improves with increased
available power, the proposed algorithm exhibits superior
performance across all power ranges. This demonstrates that
the proposed algorithm goes beyond simply increasing transmit
power, instead, each UE agent intelligently manages spectrum
and power by being aware of the surrounding interference con-
ditions, thereby utilizing network resources far more efficiently.
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V. CONCLUSION

This paper introduced a decentralized MADRL framework
for uplink co-existence in ISTNs, where each UE learns a
hybrid policy for joint spectrum and power control from
local observations. Simulation results validated its superior
performance in SINR and CP over a baseline, confirming its
scalability without centralized control. Future research will
address user mobility to enhance robustness.
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