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Abstract—In sixth-generation (6G) networks, non-terrestrial
networks (NTNs) using low Earth orbit (LEO) satellites are
expected to be pivotal in extending coverage and service diversity.
Most existing studies on LEO-based communications focus on
downlink (DL) services within the Long-Term Evolution (LTE)
framework. This paper addresses an NTN–terrestrial network
(TN) coexistence scenario based on the fifth-generation (5G)
orthogonal frequency division multiple access (OFDMA) archi-
tecture and proposes a hierarchical reinforcement learning-based
resource allocation and scheduling scheme (HRL-RAS). The
HRL-RAS optimizes resource distribution to meet heterogeneous
user demands and improve key performance indicators (KPIs)
such as data rate for future integrated NTN–TN systems.

Index Terms—satellite communication, coexistence scenario,
hierarchical reinforcement learning

I. Introduction

With the rapid evolution of communication technologies,
low Earth orbit (LEO) satellite communications have become
a key enabler for sixth-generation (6G) use cases. However,
their high mobility and wide coverage pose challenges such as
ensuring continuous user equipment (UE) service, managing
mobility, and addressing resource allocation and frequency
overlap in terrestrial network (TN) and non-terrestrial network
(NTN) coexistence [1]. To mitigate these issues, the 3rd
Generation Partnership Project (3GPP) has defined NTN–TN
coexistence scenarios in major standardization documents,
with ongoing efforts to refine the specifications [2].

In current 3GPP specifications, all NTN–TN coexistence
scenarios are defined using the Long-Term Evolution (LTE)
architecture and parameters as the baseline. To accommodate
diverse user equipment (UE) requirements, this paper proposes
a hierarchical reinforcement learning (HRL)-based resource
allocation and scheduling scheme (HRL-RAS) for optimizing
resource allocation in orthogonal frequency division multiple
access (OFDMA) systems [3], [4]. The proposed HRL-RAS
is evaluated in an NTN downlink (DL)–TN DL coexistence
scenario, as illustrated in Fig. 1. By adaptively adjusting and
assigning resource blocks (RBs) according to individual UE
demands, the HRL-RAS enhances key performance indicators
(KPIs) such as data rate.

Fig. 1: HRL-RAS system model.

II. System Model

As illustrated in Fig. 1, this paper introduces a hierar-
chical reinforcement learning (HRL) framework to optimize
RBs scheduling for UE requesting DL services over a 5G
OFDMA architecture [3]. Each UE is classified into one of
three service categories: enhanced mobile broadband (eMBB),
ultra-reliable and low-latency communications (uRLLC), or
massive machine-type communications (mMTC). In the pro-
posed HRL-RAS scheme, the meta-scheduler (m) determines
the total RBs assigned to each service type, while the sub-
controller (s) allocates RBs to subframes according to the
policy determined by m. The UE set is defined as K = {k|k =
1,2, . . . ,Nk}, where m corresponds to a 10 ms frame and s to a
1 ms subframe in the OFDMA structure. The Markov decision
processes (MDPs) for each HRL layer are described as follows:

1) Meta-State (Sm(t) = {km
e ,k

m
u ,k

m
c }): In the upper layer,

the meta-scheduler m periodically (every 10 ms) collects DL
service demand information for all UEs classified as eMBB
(km

e ), uRLLC (km
u ), or mMTC (km

c ) under the NTN–TN coex-
istence scenario. Based on this information, m determines the
RB allocation for each service category.
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TABLE I: Simulation parameters.

Definition Value
Operating frequency (DL) S-band (2 GHz)
Satellite altitude (LEO) 600 km
Bandwdith, Subcarrier Spacing 20 Mhz, 15 KHz
Nk 1000
SINRτ 1 dB
Training Epoch, Step 1000, 500
Learning rate 0.0001
Discount factor (γ) 0.99

2) Meta-Action (Am(t) = {am
e ,a

m
u ,a

m
c }): Every 10 ms, m

determines the RB allocation ratios for the current frame—am
e

for eMBB, am
u for uRLLC, and am

c for mMTC—based on the
collected service demand data.

3) Meta-Reward (Rm(t)): The meta-reward is defined as
the proportion of UEs whose signal-to-interference-plus-noise
ratio (SINR) exceeds a predefined threshold SINRτ , as given in
Eq. (1). The goal is to design an RB allocation and scheduling
policy that maximizes UE throughput in the OFDMA structure
while minimizing interference.

Rm(t) =
∑k=Nk,k∈K

k=1 1(SINRk ≥ SINRτ)

∑k=Nk,k∈K
k=1 1

. (1)

4) Sub-State (Ss(t) = {Sm(t),ks
e,k

s
c,k

s
u}): In the lower layer,

the sub-controller s operates at the subframe level (1,ms)
within the OFDMA structure. Using the allocation policy
determined by Sm(t), s collects information on the UEs—ks

e
(eMBB), ks

c (uRLLC), and ks
u (mMTC)—to which each DL

RB will be assigned at the current time step.
5) Sub-Action (As(t) = {as

e,a
s
c,a

s
u}): Based on Ss(t), the

sub-controller allocates RBs within its bandwidth to the cor-
responding service requests: as

e for eMBB, as
c for uRLLC, and

as
u for mMTC.
6) Sub-Reward (Rs(t)): The sub-reward is defined as the

data rate achieved by each UE, as expressed in Eq. (2). This
reward formulation is designed to optimize RB scheduling,
reduce interference within the subframe, and enhance KPIs.

Rs(t) =
B

Nk,s
log2(1+SINRk). (2)

In summary, this work proposes HRL-RAS, a hierarchical
MDP-based framework for optimized resource allocation in
NTN–TN coexistence scenarios within the 5G architecture,
employing a hierarchically structured actor–critic algorithm for
fine-grained RB allocation policy adjustment.

III. Performance Evaluation
As illustrated in Fig. 1, the performance of the proposed

HRS-RAS model in an NTN–TN coexistence scenario is eval-
uated through simulations conducted in a Python environment,
with reference to the 3GPP simulation parameters and TableI
[2]. The total simulation time is set to 50 ms, where, at every
10 ms interval, m determines an allocation strategy based
on the service-specific resource requirements and transmits
Am(t) to each s (subframe). Each s subsequently executes the

(a) HRL-RAS reward convergence. (b) KPIs results.

Fig. 2: HRL-RAS simulation results.

resource allocation action As(t) every 1,ms to satisfy Am(t),
while learning to maximize the reward.

To assess the performance metrics of the proposed HRL-
RAS model, the convergence behavior of the reward function
was analyzed, as illustrated in Fig. 2(a). The training results
indicate that convergence commenced at approximately the
420th episode, and the similarity between the convergence
trends of m and the overall reward curve confirms the effec-
tiveness of the model. Furthermore, as shown in Fig. 2(b), an
episode-wise analysis of the KPI metrics for the upper and
lower layers demonstrates that both Rm(t) and Rs(t) exhibit
clear convergence trends. Specifically, Rm(t) aims to enhance
the SINR of UEs allocated to the OFDMA bandwidth over a
50,ms duration, thereby enabling the formulation of an optimal
RB allocation policy. In parallel, Rs(t) optimizes the number
of RBs assigned per subframe at 1,ms intervals, based on
the upper-level resource allocation policy, to improve UE data
rates. The observed improvement in both Rm(t) and Rs(t) KPIs
over successive episodes confirms the successful derivation of
the HRL-RAS strategy.

IV. Conclusion
This paper proposes HRL-RAS, an optimal resource allo-

cation scheme based on an HRL architecture for NTN–TN
coexistence in the 5G OFDMA framework. HRL-RAS im-
proves overall resource allocation efficiency and enhances DL
service KPIs for individual UEs. Future work will extend
this approach using human-feedback reinforcement learning
to address dynamically varying service demands.
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