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Abstract—Unsupervised clustering of time-series data is crucial
in domains where labeled data is unavailable and discovering
meaningful subgroups within sequential data is essential for
decision-making. However, most existing approaches are tightly
bound to a specific representation learning paradigm, limiting
their adaptability to varying data characteristics and architec-
tures. In this paper, we propose a modular and encoder-agnostic
clustering framework that can be seamlessly integrated with
diverse self-supervised representation learning backbones. Our
method follows a two-stage pipeline: we first pretrain a temporal
encoder using self-supervision to learn expressive representations,
then fine-tune the encoder jointly with a clustering objective
to shape a cluster-aware latent space. We further enhance
training stability by employing a batch-wise centroid update
mechanism compatible with mini-batch iteration. Experimental
results on multiple real-world time-series datasets show that our
method consistently outperforms a baseline that relies solely on
pretrained embeddings without incorporating clustering objec-
tive. We validate the effectiveness of our modular clustering
framework through t-SNE-based visual analysis and rigorous
quantitative evaluation.

Index Terms—clustering, time-series data

I. INTRODUCTION

Clustering time-series data in an unsupervised manner is
a critical task across many real-world domains, where ex-
plicit class labels are unavailable or prohibitively expensive
to obtain. Rather than relying on predefined categories or
supervised guidance, clustering enables the discovery of in-
trinsic groupings in data, which is particularly valuable in
domains where the underlying pattern taxonomy is unknown.
For time-series data, which are inherently temporal and often
high-dimensional, this requires robust representation learning
combined with adaptive clustering strategies.

In manufacturing, multivariate time-series data are abun-
dantly generated from industrial equipment such as sensors,
programmable logic controllers (PLCs), and power meters.
These data reflect dynamic changes in machine operations
and process states, yet are rarely annotated. Unsupervised
clustering provides a practical solution for identifying dis-
tinct operational modes and even KPI-driven analysis such
as OEE computation, without the need for labeled ground
truth [1]. In healthcare, continuous time-series signals such
as ECG, respiration curves, and glucose monitoring data are
widely available for patient monitoring. However, the lack of
well-defined categories and the complexity of patient-specific
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temporal patterns hinder supervised modeling. Clustering can
help group patients exhibiting similar physiological patterns
and uncover subtypes of diseases, empowering healthcare
practitioners to make informed clinical decisions [2, 3]. Such
numerous applications across various domains have led to a
growing demand for clustering methods capable of applying to
diverse data types spanning different domains while effectively
capturing their heterogeneous temporal patterns.

Despite its importance, time-series clustering remains a
challenging task due to the intrinsic diversity of temporal data.
Most existing clustering approaches are tightly optimized for a
single representation learning encoder, which inherently limits
their applicability to specific types of time-series data. When
temporal characteristics, such as sampling frequency, station-
arity, or pattern complexity, differ from those seen during
model design, the encoder often fails to produce meaningful
representations, leading to significant degradation in clustering
performance. This phenomenon reflects a fundamental lim-
itation in machine learning: there is no one-fits-all method.
Therefore, a more flexible and modular design is needed in
which the clustering functionality remains stable regardless of
the underlying encoder architecture. To address this challenge,
we propose a ‘plug-and-play’ clustering framework that is
decoupled from any specific encoder. Our method enables
adaptive integration with diverse temporal backbones, allow-
ing a representation-compatible and encoder-agnostic cluster-
ing framework that can adapt across diverse data domains.
Throughout experiments on real-world time-series datasets,
we validate the effectiveness of our proposed method by
demonstrating superior clustering performance compared to a
baseline that relies solely on pretrained embeddings without
clustering-specific learning. Furthermore, qualitative analyses
using latent space visualizations demonstrate that our method
successfully captures meaningful temporal structures and pre-
serves cluster separability across diverse time-series patterns.

II. RELATED WORKS

The proposed method adopts a two-stage framework that
consists of: (i) time-series representation learning module to
extract semantically meaningful embeddings and (ii) fine-
tuning a clustering module on top of the learned embeddings
to induce cluster-friendly representations and obtain explicit
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Fig. 1. Overall network architecture of our method.

cluster assignments. We review relevant literature along these
two axes.

A. Time-series Representation Learning

Recent advances in computer vision and natural language
processing have highlighted the effectiveness of large-scale
representation learning and transfer learning frameworks. Mo-
tivated by this success, representation learning for time-series
data has gained increasing attention. These methods aim to
learn temporally aware embeddings that capture local and
global structures inherent in sequential signals. Among them,
TS2Vec [4] stands out as a state-of-the-art self-supervised
learning framework for time series, which learns contextu-
alized representations by maximizing the similarity between
representations of overlapping subsequences across multiple
temporal resolutions using a hierarchical contrastive loss.
Although TS2Vec yields powerful embeddings that improve
downstream tasks such as classification or forecasting, it
does not explicitly promote cluster-friendly properties in the
learned space. Moreover, the representation remains a black-
box, limiting interpretability and direct cluster assignment in
an unsupervised setting. To address this issue, our method
integrates both representation learning and clustering objective
during fine-tuning. By jointly optimizing a general-purpose
representation loss and a clustering-specific objective, we
induce cluster-friendly latent representations while preserving
the semantic structure encoded in the pretrained embeddings.
This prevents the encoder from collapsing into trivial solutions,
thereby enabling stable training and yielding more accurate
cluster assignments.

B. Deep Clustering Method

Deep clustering method aims to jointly optimize discrim-
inative feature extractor and cluster assignments through a
unified training objective. Notable examples are the deep
clustering network (DCN) [5] and its variant [6], which
propose a joint learning framework in which latent features
are shaped to be compatible with K-means clustering. This
is typically achieved by integrating a clustering loss into an
autoencoder or reconstruction-based architecture, encouraging
the intermediate features to form compact clusters. Although
DCNs have shown effectiveness in image and tabular domains,
typically relying on reconstruction-based architectures, their

applicability to time-series data remains limited. These meth-
ods are often designed for static data and do not adequately
address the temporal dependencies and dynamic variations
inherent in sequential signals. As a result, the interaction
between time-series-specific backbones and clustering mod-
ules has not been thoroughly explored or validated in prior
literature. In this work, we bridge this gap by demonstrating
that clustering-aware objective can be stably integrated with
pretrained temporal encoders through a plug-and-play design.
Our method successfully couples a clustering module with a
time-series backbone, enabling robust cluster discovery with-
out compromising the quality of the temporal representation.
This modular integration provides a practical pathway toward
scalable, encoder-agnostic time-series clustering.

III. METHOD
A. Problem Formulation

Let Dy = {z;} ZN="1 be a training dataset consisting of multi-
variate time-series samples, where each z; € RE*P represents
a time-series of length L with D variables. The test dataset is
denoted as Dy = {(z, ;) } <, where y; € {0,...,C — 1} is
the ground-truth class label used only for evaluation.

We consider an fully unsupervised setting where no la-
bel information is available during training. The goal is to
learn a clustering assignment function, i.e., P : RLxD _,
{0,..., K — 1}, which assigns unseen test input z* to one
of K clusters representing distinct temporal patterns. For the
proposed unsupervised clustering framework, we introduce
three components — an encoder, a projection head, and a
clustering module — as shown in Figure 1. We define each
component as follows:

o Encoder fy : v — 2 € R? maps the input sequence

into a latent representation z.

e Projection head g4 : z — h € R is a linear layer
that projects the latent representation z into a clustering-
compatible space.

o Clustering module learns K centroids M =
(1., o] € REXE and minimizes the assignment
loss to form compact clusters in the latent space.

B. Pretraining via Self-supervision

Our method follows a two-stage training scheme, where the
encoder network fy is first pretrained using a self-supervised
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learning objective before clustering optimization is applied.
This pretraining phase initializes the encoder parameters 6 in a
way that preserves temporal and structural patterns embedded
in the raw time-series data, thereby enhancing its ability to
capture meaningful variations among latent representations.
The encoder architecture fy can be flexibly selected depending
on the data characteristics, including convolutional, recurrent,
or attention-based models. The pretraining objective, denoted
by Lrep,i = (fo(x;)), can also be instantiated using various
self-supervised frameworks such as TS2Vec or reconstruction-
based losses. These objectives are designed to learn represen-
tations that reflect both temporal patterns and high-level global
structures across the input sequences.

C. Fine-tuning with Clustering Objective

Following the self-supervised pretraining phase, we fine-
tune the encoder to promote clustering-aware representations
while preserving the temporal semantics learned previously.
To this end, we define a clustering loss that encourages the
projected representation h; to be close to one of K latent
cluster centroids. Let M = [u1,...,ux] € RZ*K denote
the matrix of cluster centroids, and s; € {0,1}¥ be a one-
hot assignment vector indicating the cluster to which h; is

assigned, satisfying ZkK:1 six = 1. The clustering loss is
defined as:
N[I
Lcluster,i = Z ||hz — qu;”g . (D)
i=1

This objective encourages each sample to be mapped close
to its assigned centroid in the latent space, effectively shaping
the encoder output into a cluster-friendly representation space.
To avoid degenerate solutions such as all samples collapsing
to a single cluster or the encoder producing trivial outputs,
we retain the self-supervised representation loss Ly, during
fine-tuning. This ensures that the encoder continues to pre-
serve meaningful temporal structure while being refined for
clustering. Thus, we jointly train the three components of our
unsupervised clustering framework — fy, g4, and K centroids
M - based on the following objective:

1 Ny

minimize — g Liep,i + Mcluster,i- 2)
6,6,M Ny 4 1
i

where A > 0 is a balancing hyperparameter that controls the
trade-off between preserving the pretrained representation and
promoting clustering structure.

D. Batch-wise Update of Cluster Centroid

Following the K-means-friendly clustering approach pro-
posed in the Deep Clustering Network (DCN) [5], we up-
date both cluster assignments and cluster centroids M =
(1, .-, px] € REXE during training.

Cluster assignment update. For each projected feature
hi = gs(fo(xi)), the assignment vector s; € {0,1}X is
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determined by assigning h; to the centroid with the smallest
Euclidean distance among the K centroids:
Sik:{l if k = argmin; ||hi—ﬂjH§a 3)
' 0 otherwise.
This hard assignment corresponds to assigning h; to the
nearest centroid in the latent space.

Cluster centroid update. Once the assignment s; is com-
puted, the centroid corresponding to the assigned cluster is
updated immediately using an online exponential moving
average (EMA) strategy:

il o (i = 1) si )

where 7 € [0,1] is a centroid-specific learning rate, and s;
ensures that only the centroid associated with the assigned
cluster is updated for the current sample h;. This batch-wise
and online update mechanism provides several practical ad-
vantages. It enables gradual convergence of cluster structures
without requiring full-dataset passes and aligns naturally with
mini-batch stochastic gradient descent (SGD). In addition,
since centroids are continuously refined using only current
batch samples, the model can stably adapt to evolving data dis-
tributions and maintain consistent cluster structure throughout
training.

IV. EXPERIMENTS

TABLE I
CLUSTERING PERFORMANCE COMPARISON ON THE FOUR DATASETS. THE
BEST METHOD IS HIGHLIGHTED IN BOLD.

NMI RI
Dataset TS2Vec . TS2Vec-Ours TS2Vec ) TS2Vec-Ours
(W/O fine-tuning) (W/ fine-tuning) |(W/O fine-tuning) (W/ fine-tuning)
Natops 0.318 0.721 0.766 0.875
Epilepsy 0.316 0.478 0.733 0.767
UMD 0.475 0.532 0.716 0.725
BasicMotion 0.940 1.000 0.976 1.000

A. Experimental Setup

We evaluate our proposed clustering framework on a set of
multivariate time-series benchmarks selected from the UCR
Time Series Classification Archive [7]. These datasets are orig-
inally designed for classification, with each sample annotated
by a ground-truth class label. This makes them well-suited for
evaluating clustering performance in an unsupervised setting.
During training, only the raw time-series inputs are used
without any label supervision. For quantitative assessment,
we report two widely used clustering metrics: normalized
mutual information (NMI) [8] and Rand index (RI) [9], which
measure the alignment between predicted clusters and actual
class distributions.

B. Qualitative Analysis via t-SNE Visualization

To qualitatively assess the learned representations and clus-
tering structures, we visualize the latent embeddings us-
ing t-SNE projection. Fig. 2 shows scatter plots for four
datasets—BasicMotion, Epilepsy, Natops, and UMD—each
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Fig. 2. t-SNE visualizations of latent representations across clustering iterations for four datasets (columns). The top row shows pretrained embeddings before
clustering, while subsequent rows illustrate representation changes during clustering fine-tuning. Colors indicate ground-truth class labels; yellow stars denote

cluster centroids.

with ground-truth class labels color-coded. The top row for
each dataset corresponds to the state of the representation
space immediately after self-supervised pretraining, before
fine-tuning is applied. Although some class separability is
observed, the space is not yet cluster-friendly, and no cluster
assignments are available at this stage. From the second row
onward, we visualize the latent space after several cluster-
ing iterations. As training progresses, the embedding space
becomes increasingly structured: cluster boundaries sharpen,
inter-cluster distances increase, and class-specific groups be-
come more compact. The yellow star markers represent the
cluster centroids, which are dynamically updated through our
batch-wise strategy. Their movement over iterations reflects
the evolving cluster structure guided by our joint optimization
of representation and clustering objectives. This progressive
organization of the latent space demonstrates the model’s
ability to form meaningful clusters that align well with the un-

derlying class structure, despite being trained in a completely
unsupervised manner.

C. Quantitative Evaluation

We compare the proposed method against a baseline that
directly applies K -means algorithm to pretrained TS2Vec em-
beddings without any clustering-specific fine-tuning. As shown
in Table I, our approach, i.e., TS2Vec-Ours (W/ fine-tuning),
consistently outperforms the baseline, i.e., TS2Vec (W/O fine-
tuning), across all four datasets in terms of both normalized
mutual information (NMI) and Rand index (RI). Notably, the
BasicMotion dataset achieves nearly perfect scores in both
settings, but our method still pushes performance from 0.940
to 1.000 in NMI and from 0.976 to 1.000 in RI, indicating
robust alignment between clustering assignments and ground-
truth labels. These results confirm that the proposed clus-
tering framework, which jointly optimizes both representa-
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tion learning and clustering objectives, yields more cluster-
discriminative embeddings compared to simple pretraining.

V. CONCLUSION

In this paper, we introduce a modular and encoder-agnostic
framework for unsupervised clustering of time-series data. By
combining self-supervised pretraining with a cluster-friendly
fine-tuning objective, our method enables effective latent space
structuring without relying on labeled data. Experimental
results on multiple real-world time-series datasets validate the
effectiveness of our approach, showing clear improvements
over clustering methods that use only pretrained embeddings
without fine-tuning. While the proposed framework is de-
signed to be compatible with a wide range of representation
learning backbones, our current experiments focus exclusively
on a TS2Vec-based encoder. As part of future work, we
plan to extend our evaluation to include more diverse self-
supervised paradigms such as representation learning based on
large language models (LLMs), thereby further validating the
generalizability and extensibility of our clustering approach.
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