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Abstract—The development of deep language models (DLMs)
has made them more widely used. This has led to a growing
need for tools that can help understand how these models work,
especially when it comes to understanding the reasoning behind
their outputs. This explainability is emerging as a key factor
in building trust between users and technologies. Achieving
meaningful interpretability remains a significant challenge, es-
pecially when DLMs are considered black-box systems, where
internal details like parameters and gradients are inaccessible.
Although many techniques have been proposed, most struggle to
meet two critical goals simultaneously: (i) maintaining efficiency
during inference, and (ii) remaining compatible with black-
box models without causing out-of-distribution behaviors. To
overcome these limitations, we introduce a method that explains
model predictions by selecting a concise and informative subset
of input words. Our approach involves training a lightweight
selection network to identify a minimal yet informative subset
of input tokens. Once trained, this network operates with high
efficiency, directly identifying a salient subset of words as the
explanation for new samples at inference time. For training, we
leverage policy gradients for optimization, which critically allows
our method to operate without requiring gradient information
from the target DLM, thus making it inherently applicable to
black-box systems by directly interacting with the target DLM
solely through its input-output predictions without requiring any
gradient information.

Index Terms—explainable Al black-box language model, word
subset selection

I. INTRODUCTION

Many of the most powerful Deep Language Models (DLMs)
are now deployed as “black-box” services (e.g., APIs). While
this paradigm accelerates adoption, it introduces a fundamental
challenge: their internal decision-making processes are entirely
opaque. When these models are applied in sensitive fields
like medicine or law, this lack of transparency creates an
urgent need for methods that can explain their predictive
rationale without access to internal architecture, parameters,
or gradients, which is essential for ensuring trustworthiness
and accountability.

One of the main challenges of operationalising model expla-
nations is the trade-off between performance and practicality.
Instance-wise explanation methods [1, 2, 3, 4, 5, 6], while
flexible, are often too computationally expensive for real-
world use due to their need for repeated model access or
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per-instance optimization, precluding their use in low-latency
environments. On the other hand, train-based approaches
[7, 8, 9, 10], which train a separate explainer model for
fast single-shot explanations, face a different challenge. In
true black-box settings where gradients are inaccessible, they
must often rely on training a surrogate predictor. However,
accurately approximating a large-scale DLM with a surrogate
is a prohibitively resource-intensive task, making this approach
unscalable and impractical for many real-world applications.

Our method achieves both high efficiency and true black-
box compatibility by framing explanation as a selection
problem. We train a reusable selector network that operates
in a single forward pass at test time, ensuring low-latency
inference. This selector is optimized using policy gradients,
which circumvents the need for internal model access. The
selection for each word is modeled as a Bernoulli trial, and the
policy is trained with rewards computed from the predictions
of the black-box model on the selected subset of words alone.

II. RELATED WORKS
A. Instance-wise Method

A significant body of work has focused on instance-wise
methods, which generate an explanation for a single prediction
at a time by analyzing the model’s behavior concerning
that specific input. These can be broadly categorized into
perturbation-based and gradient-based approaches.

Perturbation-based methods locally approximate the
model’s decision boundary. LIME [6] trains a simple and
interpretable model on perturbed samples in the vicinity of the
instance being explained. SHAP [5], grounded in cooperative
game theory, computes optimal feature importance values
(Shapley values) and provides strong theoretical foundations.
Although powerful, both LIME and SHAP typically require
a large number of queries to the target model to generate a
single explanation.

Gradient-based methods, such as Integrated Gradients (IG)
[1] and DeepLIFT [3], calculate feature importance by prop-
agating attribution scores from the output back to the input.
These methods are often more efficient than perturbation-based
approaches, but fundamentally require access to the model’s
gradients, making them inapplicable to the true black-box
settings we address.
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A common limitation across all these instance-wise methods
is their computational cost at inference time. The need for
multiple model queries or costly optimization for each new
explanation makes them impractical for real-world scenarios
that require low-latency or high-throughput analysis.

B. Learning-based Method

To overcome the efficiency bottleneck of per-instance meth-
ods, another line of research focuses on learning-based ap-
proaches. Pioneering works in this area, such as L2X (Learn-
ing to Explain) [9], introduced a paradigm where an explainer
model and a local surrogate model (or predictor) are trained
jointly. In this setup, the explainer learns to select a con-
cise subset of features that are maximally informative for
the surrogate, not the original target model. However, this
approach raises significant questions about the faithfulness
of the explanation. Since features are selected to explain the
behavior of the surrogate, it is not guaranteed that the resulting
explanation accurately reflects the true rationale of the original,
more complex target model. Furthermore, this paradigm faces
a significant scalability challenge. Training a surrogate model
with sufficient capacity to accurately approximate a large-scale
DLM requires substantial data and computational resources.

Other learning-based methods have different dependencies
that limit their black-box applicability. For example, while the
LTX [7] is presented as black-box compatible, its methodolo-
gies presuppose access to information beyond simple input-
output pairs. Its initial step involves cloning the target model,
which in itself requires full access to the model’s architecture
and weights, a condition unmet in true black-box scenarios.
Furthermore, its optimization process depends on the gradient
flow from this target model.

However, CXPlain [10] takes a different approach to avoid
this dependency. It operates directly on the target model by
training an explainer to predict pre-computed feature impor-
tance scores, calculated using a leave-one-out method. While
this allows the explainer to learn without a surrogate or direct
gradient access, it introduces other significant challenges,
particularly for modern DLMs. Firstly, the complexity of the
method increases with the number of features, making it dif-
ficult to scale effectively when each token in a long sequence
is treated as an individual feature. Secondly, powerful DLMs
are often highly robust to the removal of individual tokens,
meaning the leave-one-out approach can result in uniform
importance scores for all tokens. This makes it difficult to
discern which features are genuinely critical, thereby limiting
the utility of the resulting explanation. Therefore, despite their
different strategies, existing learning-based approaches remain
impractical for providing faithful and scalable explanations for
large-scale black-box DLMs.

III. PROBLEM FORMULATION

We consider the problem of explaining a pre-trained DLM,
g : XT — [0,1]¢, which has been trained for a specific
classification task. The model processes an input sequence
X = (21,29,...,27) € XT, a sequence of T' words from the

input space X. A key consideration is that the sequence length,
T, is variable and changes with each input. We treat g as a
true black-box, assuming that while we can query the model
to obtain its output g(x), we have no access to its internal
states, such as its parameters, gradients, or proprietary tokens
(e.g., [MASK], [PAD]).

The objective of our explanation is to identify the subset of
words in x most responsible for its prediction. To this end,
we formulate the problem as learning a binary selection mask
m = (my,...,mr) € {0,1}7, where m; = 1 indicates that
the ¢-th word is selected as part of the explanation.

Our formulation is predicated on the assumption that re-
placing non-essential words with a neutral placeholder does
not significantly alter the model’s decision-making process.
We formalize this substitution as follows:

X=mOx+(1-m): zyr (L

Here, the perturbed input X is constructed using an element-
wise multiplication with the mask m, while a placeholder
word, xyyr1, fills the positions of the masked-out tokens.
Therefore, our ultimate objective is to solve the following
optimization problem:

IIgl’l ExwprmNBern(Trg(x)) [E(Q(X), g(i)) + )\Hm”O] . (2)

IV. METHOD

To address the challenges outlined above, we introduce
a keyword-based explanation method, which we refer to as
PS2, a novel framework for efficiently generating explanations
for black-box DLMs. Our approach centers on training a
reusable selector network. This network is optimized using
a policy gradient strategy, which allows it to learn how to
select informative subsets of words without requiring access
to the target model’s internal gradients. Crucially, this policy
gradient approach utilizes hard, discrete sampling for word
selection. This ensures the target model is always evaluated
on realistic, in-distribution inputs (i.e., actual word subsets),
avoiding the out-of-distribution issues common to methods
that use continuous relaxations and thereby enhancing the
faithfulness of the resulting explanation. The result is an
explainer that is both fast at inference time and inherently
compatible with black-box systems.

A. Selector Network Architecture

Our selector network, my, is designed to be efficient, flex-
ible, and context-aware. It consists of two main components:
a fixed feature extractor and a trainable selection module.

First, to enable context-aware selections, we leverage a
powerful, pre-trained DLM, f : X7 — RT*4 as a feature
extractor. For any given input x of length 7, we compute
contextualized embeddings for all tokens. Crucially, this fea-
ture extractor f is kept frozen during the training of our
selector. This allows us to benefit from its rich linguistic
knowledge without incurring high computational costs, ensur-
ing our method has high training efficiency, as only the small
selection module needs to be optimized.
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Second, the selection module is implemented as a simple
shared MLP. Specifically, we compute the selector output
using the shared MLP architecture as follows:

mo(x)y = o(MLP(f(x):)) fort=1,...,T 3)

where o is a sigmoid function. This MLP processes the
contextualized embedding of each word f(x); independently
to compute word-level selection probability mg(x),. This re-
sulting probability distribution, 7y(x), is then used as the pa-
rameter for a Bernoulli distribution, from which a binary mask
m ~ Bern(mg(x)). Finally, this mask is then used, along
with a neutral placeholder xnyrp, to transform the original
input x into the final sequence X according to Equation (1).
A critical advantage of this design is its ability to naturally
handle variable-length sequences, as applying the same MLP
to each token allows our method to dynamically generate an
explanation mask for any given input.

The neutral placeholder, xyyr 1, is deliberately chosen to be a
semantically neutral word (e.g., “the”) that is unlikely to affect
the model’s original prediction. Performing substitution di-
rectly in the input text space, rather than manipulating special
token IDs or embeddings, ensures our method is compatible
with true black-box models where such internal interventions
are forbidden. Furthermore, this approach guarantees that the
model is always queried with natural in-distribution input,
which helps to ensure a faithful explanation.

B. Optimizing the Selector via Policy Gradients

To ensure explanations are grounded in the actual task
outcome, we formulate the loss term {(g(x),g(X)) from
Equation (2) in a supervised manner. By incorporating the
ground-truth label y, we guide the selector to identify subsets
that are not just influential but also relevant to the correct
classification.

The selector network is then trained using the REINFORCE
algorithm [11], a classic policy gradient method. This ap-
proach is well suited for our task as it directly handles the
discrete action space of word selection, thus circumventing
the need for continuous approximations or relaxations [12, 13].
Adherence to discrete selections ensures that the target model
is only ever evaluated on valid, in-distribution inputs. Fur-
thermore, this gradient-free optimization allows the selector
to learn using only the scalar reward signals obtained from
querying the black-box model, requiring no access to the target
model’s internal gradients and making it perfectly suited for
our target setting.

The policy gradient theorem provides an unbiased estimator
for the gradient of our objective function £(6) from Equa-
tion (2) concerning the selector’s parameters 6:

VoL(0) = Exypsy [Eamvsenirs )| *
Vologpe(m) - (¢ (9(x), g(%)) + Almfo) ||

The term pg(m) = []}_, (70 (x))5™ (1 — (mp(x)):) ™ is the
probability of sampling the gate vector m. This corresponds to
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the probability mass function of a multivariate Bernoulli dis-
tribution, which is parameterized by the word-level selection
probabilities output by our selector, 74 (x).

V. EXPERIMENTS
A. Experiment Setup

Datasets. We use the Movies dataset [14] for its binary
sentiment labels and, more importantly, its human-annotated
rationales. These rationales are provided as specific text spans
within each review (a single review may contain multiple
spans). The availability of these ground-truth annotations
enables a precise, token-level assessment of explanation per-
formance.

Performance Metrics. We evaluate the discriminative
power of the selected word subsets using three standard
metrics: classification accuracy (ACC), AUROC, and AUPRC.
This evaluation is performed at multiple levels of sparsity,
corresponding to gating rates of 5%, 10%, and 15%. The met-
rics are computed based on the black-box model’s predictions
when provided with only the selected words as input.

Benchmarks. We evaluate our method against two classes
of representative baselines. The first class consists of per-
instance methods that estimate importance without a separate
training phase, including KernelSHAP [5], LIME [6], and
Integrated Gradients (IG) [1]. The second class consists of
learning-based methods, including L2X [9], LTX [7], and
CXplain [10].

Among the learning-based methods, L2X can bypass the
difficulty of training a high-capacity surrogate. To ensure a fair
and rigorous comparison, our experimental setup grants it di-
rect oracle access to the target DLM for training. Furthermore,
to maintain a level playing field, all learning-based methods
(L2X, LTX, and CXplain) were trained using the same word
embeddings provided by f(x). A key limitation, however, is
that L2X, along with IG and LTX, relies on the target model’s
gradients. While this dependency places these methods outside
our black-box definition, we include them to benchmark our
method against such gradient-aware approaches.

Our experimental setup is as follows: We implement our
selector network as a 2-layer MLP with ReLU activation
functions. For the fixed feature extractor, we use a 12-layer
transformer model and extract the contextualized embeddings
from its 10th layer. We train the selector for 40 epochs
using the Adam optimizer [15] with a mini-batch size of 32
for the Movies dataset. We perform a hyperparameter search
for the learning rate over the set 0.0001, 0.00025, 0.0005,
0.001. For the policy gradient update, we estimate the gradient
using 8 samples per input instance. The sparsity regularization
coefficient A in our objective function is set to 0.00625.

B. Experiment Result

We evaluate our proposed method both quantitatively and
qualitatively against baseline approaches. The results demon-
strate the superior performance of our method in identifying
discriminative and faithful explanations.



TABLE I: The Movies dataset: Performance comparison (ACC

, AUROC, AUPRC) across selection rates (5%, 10%, 15%).

Method 5% 10% 15%
ACC AUROC AUPRC ACC AUROC AUPRC ACC AUROC AUPRC

LIME 0.498 £ 0.043  0.501 = 0.044  0.509 £ 0.029 | 0.496 £ 0.017  0.506 + 0.020  0.528 + 0.015 | 0.517 £0.019  0.518 £ 0.050  0.535 + 0.052
SHAP 0.408 £ 0.070  0.416 £ 0.071  0.452 £ 0.055 | 0.474 £ 0.021 0470 £ 0.025 0.497 £ 0.022 | 0472 £0.032 0.471 £0.039  0.496 + 0.022
IG 0.560 + 0.067  0.416 £ 0.071  0.452 £ 0.055 | 0.475 £ 0.004 0.467 £ 0.015  0.488 £ 0.023 | 0471 £0.016  0.447 £ 0.053  0.470 + 0.057
CXPlain 0.522 £ 0.021  0.512 £0.025  0.526 £ 0.025 | 0.512 £ 0.004  0.571 £ 0.019  0.571 £ 0.010 | 0.524 £ 0.006  0.567 £ 0.014  0.582 + 0.015
L2x" 0.518 £ 0.043  0.506 £0.092  0.541 £0.113 | 0.561 £ 0.054 0.596 £ 0.060  0.590 + 0.080 | 0.583 + 0.065 0.628 £ 0.071  0.622 + 0.077
LTX" 0.560 + 0.044  0.550 = 0.074  0.560 £ 0.106 | 0.589 £ 0.066  0.605 + 0.078  0.625 + 0.104 | 0.599 £ 0.086  0.655 £ 0.088  0.664 + 0.095
Ours 0.567 £0.029 0761 £0.031  0.767 £ 0.030 | 0.733 £0.015  0.805 £ 0.016  0.797 £ 0.025 | 0.720 £ 0.027 ~ 0.816 + 0.035  0.808 + 0.038
Black Box (Full text) 0.859 0.942 0.944

* Methods are adapted to our setting for fair comparison.

Legend: high + evidence  high prob.  evidence

trees lounge is the directoral debut from one of my favorite actors ,

steve buscemi he gave memorable performences in in the soup

, fargo , and reservoir dogs . now he tries his hand at writing , directing and acting all in the same flick . the movie starts out
awfully slow with tommy ( buscemi ) hanging around a local bar the " trees lounge " and him pestering his brother . it 's obvious
he a loser . but as he says " it 's better i 'm a loser and know i am , then being a loser and not thinking i am " well
put . the story starts to take off when his uncle dies , and tommy , not having a job , decides to drive an ice cream truck .
well , the movie starts to pick up with him finding a love interest in a 17 year old girl named debbie ( chloe sevigny ) and
i liked this movie alot even though it did not reach my expectation . after you 've seen him in fargo and reservoir dogs , you know
he is capable of a better performence . i think his brother , michael , did an excellent job for his debut performence . mr .
buscemi is off to a good career as a director !
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(c) Our Method

Fig. 1: Qualitative examples of explanations generated by our
ground-truth human rationales.

C. Quantitative Analysis

Table I presents the quantitative comparison of our method
against the baselines across three selection rates (5%, 10%,
and 15%). The results clearly show that our proposed method
consistently and significantly outperforms all baseline expla-
nation methods across all evaluation metrics (ACC, AUROC,
and AUPRC) and at all sparsity levels.

For instance, at a 10% gating rate, our method achieves an

proposed method on the Movies dataset, compared against

AUROC of 0.805, a substantial improvement over the next
best baseline, LTX of 0.605. This performance gap is con-
sistent across all metrics. Notably, our method’s performance
gracefully improves as more features are selected, approaching
the upper-bound performance of the full-text black-box model.
In contrast, the performance of the baseline methods saturates
more quickly or improves only marginally. This demonstrates
the effectiveness of our policy-based selection strategy in

222



identifying highly discriminative word subsets that are faithful
to the model’s behavior.

D. Qualitative Analysis

In addition to the quantitative results, we provide a qualita-
tive comparison in Fig.1 to visually assess the quality of the
generated explanations. The figure displays a representative
sample from the Movies dataset, showing the explanations
generated by LIME, IG, and our method for the 15% selection
rate setting. These are compared against the ground-truth
human rationale to highlight the differences in alignment.

As the legend indicates, words highlighted in rep-
resent correctly identified human rationales (true positives),
words in are selected by a method but are not part of
the ground-truth rationale (false positives), and words in red
are human rationales missed by the method (false negatives).

It is visually evident that the explanations from LIME and
IG are noisy, selecting several non-essential words (many
orange highlights) while failing to capture the full extent of
the human rationale (several red highlights). For example, It is
visually evident that LIME’s explanation is often incomplete,
failing to capture some of the most critical parts of the human
rationale. While IG identifies most of the important words
within the human rationale, it suffers from low precision,
highlighting numerous extraneous words that are not part of
the ground truth. These false positives, such as the phrase
“an ice cream truck,” often lack a clear connection to the
sentiment analysis task. In contrast, our method generates
a more coherent and precise explanation that aligns much
more closely with the human-annotated spans. It successfully
identifies key phrases like “memorable performances”, “an
excellent job” and ““a good career as a director”” while selecting
very few incorrect words. This visual evidence supports our
quantitative findings, suggesting that our method learns to
identify more faithful and human-interpretable rationales.

VI. CONCLUSION

We addressed the critical challenge of efficiently generat-
ing faithful explanations for true black-box Deep Language
Models. We introduced PS2, a novel framework that trains a
lightweight, reusable selector network to identify concise and
informative word subsets as explanations. Our core contribu-
tion is the use of a policy gradient strategy, which optimizes
the selector using only the target model’s final output predic-
tions. This approach circumvents the need for internal model
access, such as gradients or architectural details.

Our extensive experiments demonstrated that our method
significantly outperforms existing per-instance and learning-
based baselines on both quantitative metrics and in qualitative
alignment with human rationales. The results confirm that our
method successfully achieves both high efficiency at inference
time and true black-box compatibility without sacrificing the
faithfulness of the explanations. By providing a practical
and scalable solution, our work represents a meaningful step
towards making the decisions of opaque language models more
transparent and trustworthy.
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There are several exciting directions in which future work
could explore. One promising avenue is applying the proposed
framework to other tasks, such as text generation or regression.
Additionally, examining more sophisticated policy optimisa-
tion algorithms could enhance training stability and sample
efficiency.
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