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Abstract—Accurate cost estimation is crucial for 

successful software project planning and resource 

allocation. However, software development is inherently 

unpredictable due to factors such as changing 

requirements, inter-module dependencies, and variations in 

team productivity, rendering traditional estimation 

methods increasingly ineffective. This paper proposes a 

hybrid cost estimation method that combines the 

deterministic efficiency of a hybrid algorithm with the 

predictive power of supervised learning specifically, linear 

regression to enhance the accuracy of early-stage estimates. 

The research begins by analyzing key project 

characteristics, including software size, complexity, team 

experience, and estimated effort. A hybrid algorithm serves 

as a constructive heuristic to systematically select the most 

influential cost drivers based on domain-informed criteria, 

ensuring critical factors are prioritized early in the 

estimation process. A linear regression model is then 

trained using these selected features to predict costs. The 

entire framework is implemented in Python using Jupyter 

Notebook, Google Colab, and PyCharm environments. To 

evaluate its effectiveness, experiments were conducted using 

industry-standard error metrics such as Mean Absolute 

Error (MAE), Mean Squared Error (MSE), and Root Mean 

Squared Error (RMSE). The results demonstrate that the 

proposed hybrid approach outperforms standalone models 

in both testing accuracy and computational efficiency. The 

greedy algorithm effectively reduces feature noise and 

dimensionality while highlighting underlying trends and 

quantitative relationships in the regression model. This 

work demonstrates that combining a simple heuristic with a 

statistical model offers a promising solution for practical 

cost estimation. Future research could explore applications 

to real-world datasets and investigate more advanced 

hybridization strategies. 

Keywords—estimation, machine learning, Greedy 

Algorithm, accuracy, hybrid 

I. INTRODUCTION 

Accurate cost estimation is a critical phase in software 
development planning, as it directly impacts feasibility 
assessments, budgeting, and resource allocation for the 
entire project. However, the growing complexity and 
dynamic nature of modern software systems—such as 
evolving requirements and shifting team 
compositions—have underscored the need for more 
robust, efficient, and adaptive estimation methods. 

Conventional approaches, such as rule-based and 
algorithmic techniques, remain popular due to their 
simplicity. One widely used method is the Greedy 
Algorithm, which makes locally optimal decisions at each 
step. While computationally efficient, this approach often 
overlooks long-term effects, leading to suboptimal global 
solutions. In contrast, machine learning (ML) techniques 
can analyze historical project data to uncover complex 
relationships between variables. ML’s predictive 
capabilities enable more accurate cost estimations, but its 
high complexity and susceptibility to overfitting may 
limit real-world applicability. 

To address these challenges, this paper proposes a 
hybrid model that combines the strengths of both 
approaches: the Greedy Algorithm for rapid initial 
approximations and a learning-based model to refine 
those estimates. The goal is to achieve an optimal balance 
between estimation accuracy and computational 
efficiency. 

II. LITERATURE REVIEW

A. The Greedy Algorithm in Cost Estimation

Greedy Algorithm is a heuristic for constructing a
solution from an empty one by successively selecting in 
the terminals the most beneficial/simplest closest 
choice/decision. It has found its application in 
optimization type problems such as task scheduling, 
resource allocation, and routing. 

In addition to traditional rule-based and regression 
models, recent studies have explored the use of 
evolutionary algorithms in software cost estimation, 
particularly GA which is known for its global search 
capabilities and robustness in handling non-linear, 
high-dimensional optimization problems. By simulating 
natural selection through mechanisms such as selection. 

In the context of software cost estimation, the greedy 
approach can facilitate a quick assessment of cost based 
on predefined rules or priorities (e.g., selecting the least 
expensive resource or minimizing module 
implementation delays). However, due to its myopic 
nature—focusing solely on local benefits without 
considering long-term implications—this approach often 
leads to suboptimal global solutions. Furthermore, greedy 
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algorithms are inherently deterministic and lack the 
capacity to learn from historical project patterns. 
Although greedy algorithms are straightforward and 
computationally efficient, they are not well-suited to 
address the non-linearity, dynamic behavior and 
interdependencies inherent in real-world software 
projects.. 

B. Machine Learning in Cost Estimation 

As the complexity of cost estimation tasks rises along 
with dynamic and multi-dimensional constraints, new 
approaches become inevitable. Machine learning has 
received attention as a potential solution to these 
problems because it can analyze complex data, identify 
patterns, and make predictions in the presence of noise. 
The following are the advantages, applications, and 
limitations of  ML in cost estimation. 

Machine learning (ML) refers to data-driven techniques 
that enable models to learn patterns from historical data 
and make predictions without hard-coded rules. In 
software cost estimation, ML is valuable because it can 
capture complex, non-linear relationships among 
variables such as size, complexity, and team 
experience—relationships that traditional models often 
miss. Unlike rule-based methods, ML can adapt to 
changing project data and improve over time. This makes 
it especially useful in dynamic and uncertain development 
environments. The following subsections discuss ML’s 
strengths, popular models, limitations, and its integration 
with heuristic methods. 

Second, ML models are capable of learning from 
historical project data, which allows them to generalize 
and adapt to new estimation scenarios. This adaptability 
makes ML suitable for agile environments, where project 
conditions change frequently. Furthermore, ML 
techniques reduce reliance on manual feature selection by 
automatically identifying relevant patterns in large, 
high-dimensional datasets, thus increasing estimation 
accuracy and robustness.  

C. Integrating ML and Traditional Algorithms 

As we progress forward, the constraints of data and 
the dreams of machine learning highlight that in the 
realm of cost estimation, we need more hybrid structures. 
This hybridization lets it leverage the best of two worlds, 
where ML is leveraged for its predictive capability, while 
a traditional optimisation algorithm (e.g., Greedy 
Algorithm) is used for its computational efficiency, 
providing better adaptability and accuracy. By 
incorporating the disadvantages of each individual 
method, this new fusion method succeeds in applying it 
to dynamic scenes. 

 
They effectively combine the strength of traditional 

algorithms—ideal for deterministic tasks—with the 
adaptive capabilities of machine learning. While 
traditional methods excel in structured environments, 
they often falter in dynamic situations. Conversely, ML 
can analyze vast datasets and forecast trends but may not 

possess the necessary efficiency for real-time 
decision-making (Chen et al., 2022). 

 
By integrating ML with optimization algorithms, 

hybrid frameworks empower organizations to make 
informed decisions in rapidly changing conditions. For 
instance, ML models can preprocess data or generate 
predictive insights that guide optimization processes, 
yielding superior results. A study by Nguyen et al. 
(2021) illustrated how reinforcement learning was 
utilized to predict transportation costs while a Greedy 
Algorithm optimized delivery routes based on these 
insights, drastically improving both accuracy and 
computational efficiency. 
 

III. METHODOLOGY 
To address the challenge of accurate cost estimation in 

a dynamic software environment, this study proposes a 
modular hybrid framework that combines the 
computational efficiency of GRE with the adaptive 
learning ability of machine learning (ML). "This 
framework is constructed around three core functional 
modules: the input module, the optimization module and 
the output module, as shown in Figure 3.1. Hybrid of ML 
and Greedy algorithm based hybrid models for logistics 
optimization (Kumar & Patel, 2022). 

 
Fig. 1 Input Module Workflow 

 

A. Input Module 

The input data used in this framework consists of 
structured project attributes such as estimated task 
durations, number of components, complexity levels, 
developer experience, and unit resource costs. A sample 
record from the dataset is as follows: 

 
 

Fig. 2 Input module’s dataset 
 
 

The input module is responsible for data preparation 
and preprocessing. Raw software project data. For 
example, Missing value handling, Outlier removal, 
Normalization, Dimensionality reduction, such as 
Principal Component Analysis (PCA), to reduce feature 
redundancy and improve computational efficiency. This 
ensures that the input passed into the optimization 
module is both robust and compatible across 
learning-based and heuristic processes. 
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B. Optimization Module 

The optimization module includes two consecutive 
parts, i.e., quantization estimator and quantization 
adjuster. This integration makes it possible for the 
system to produce cost estimates rapidly and 
dynamically. Greedy part of the algorithm: Prepare initial 
cost estimations according to the local optimization 
strategies (e.g. the minimum resource cost or the most 
shortened due date). This element is rule-based and 
optimized to perform fast computing. 

 
Machine learning component: It takes the 

estimation results of the greedy algorithm as input and 
enhances them with the patterns learned from historical 
project data. Machine learning models (e.g., decision 
trees or multi-layer perceptrons (MLPs)) compensate for 
non-linear relationships that greedy algorithms might 
miss, tractable risk factors that are specific to the 
projection, and correlations across tasks. The two-stage 
optimization guarantees the final cost estimation to be 
able to reflect the structural project demands and the 
learned context patterns as well. 

C. Output Module 

Finally, the out put module yields the cost prediction 
and decision-making implications. Moreover, feedback 
loops for continuous learning and self-improvement are 
also supported. If there are real-time project updates or 
post-project data, such data will be fed back to input 
module to retrain the machine learning model and 
updating the estimation rules as needed. This recursive 
feature also makes the framework robust to a dynamic 
system, able to adapt to new data and keep estimate 
accuracy consistently up to date. 

 

Fig. 3. Workflow of the Hybrid Optimization Framework 

This iterative process is depicted in Figure 3.2, which 
illustrates the sequential interactions between the input, 
optimization, and output modules, as well as the feedback 
loops that ensure the system's adaptability. 

D. Implement 

This subsection presents the technical details of the 
proposed hybrid cost estimation model. All the 
development and experimentations were performed using 
Python 3.10 in Google Colab and popular data science 
libraries like Pandas, NumPy, Scikit-learn and 
Matplotlib were used. This method is modular and 
primarily composed of three stages: the dataset 
construction stage, the greedy estimation module and the 
machine learning refinement module. 
 

(a) Data Set Construction 

Since real industrial software cost data is rarely made 
public and often inconsistent, we have created a synthetic 
dataset to reflect common project parameters. This 
dataset contains 500 project records, and each record 
simulates the following key features that affect costs: 
 
Task_Duration: Estimated task completion time (in days) 
Num_Components: The number of functional 
components 
Complexity_Level: Project complexity (encoded as low 
=1, medium =2, high =3) 
Developer_Experience: The codes are Junior=1, Mid=2, 
Senior=3 
Unit_Resource_Cost: Daily cost (in US dollars) 
Risk_Score: A numerical risk indicator ranging from 0 
(low) to 1 (high) 
True_Cost: The actual cost as the prediction target 
 
These variables are generated using probability 
distributions based on the actual software project 
scenarios. The True_Cost value is modeled using 
nonlinear functions of other variables plus random noise 
to simulate market fluctuations. 
 
 
(b) Data Set Preprocessing 

 
Before inputting the data into the hybrid framework, 

several preprocessing steps need to be carried out: 
 

Missing values: Estimation is made using the median of 
features. Classification coding:Exclusive coding for 
developers' experience and complexity. Outlier detection: 
Delete entries exceeding 1.5×IQR. Normalization: 
Minimum - maximum scaling to the range [0, 1]. 
Dimensionality reduction: Apply PCA and retain a 
variance of ≥ 95% to reduce feature redundancy. The 
processed data set is split into: 
70% training, 15% validation (for ML adjustment), 15% 
test. 
 
This setting ensures unbiased performance measurement 
and model generalization. 
 
(c) Greedy Algorithm Module 
The greed module provides a rapid initial cost estimate 
by making local optimal decisions at each step. Its 
logical implementation is as follows: 
• Sort the tasks based on the lowest unit cost and 

complexity 
• First, assign the most experienced developers to carry 

out high-risk tasks 
• The estimated costs are as follows: 
• Initial_Estimate = Task_Duration × Unit_Cost × (1 + 

Risk_Score × Complexity_Factor) 
• Summarize all tasks to obtain the total cost of each 

project 
 

204



This module is deterministic and requires no training. It 
provides the initial Greedy Cost value as an additional 
feature for the next stage 
 
 

(d) Machine Learning Module 

 
Greediness needs to be compensated for with cost 
estimation optimization (by considering training data) in 
supervised learning models. In this paper, we compare 
the two models: The primary machine learning technique 
is the following: DTR (Decision Tree 
Regressor)Reasons: Transparent rules and low amount of 
computation cost. 
 
Multilayer perceptron (MLP) : Describing the non-linear 
interaction 
The input features of the model were the following: 
All standardized project functions (since 3.3.2), Greedy 
output (Greedy_Cost) 
Target variable: 
True_Cost 
Model training: 
Loss: Mean Square Error (MSE) Optimization(Grid 
search on the validation set) final model chosen based on 
best R² score and RMSE. 
 
(e) Pipeline Integration and Execution 
During the reasoning process: 
The new project data is passed to the input module 
The greedy algorithm estimates the initial cost 
The ML model uses learning patterns to refine this 
estimation 
Output the final cost forecast and evaluation indicators 
 
The system is capable of batch-processing mode 
inference work and to simulate under dynamic conditions 
(e.g. price variations, team switches) to see if robustness 
is preserved. 

IV. RESULTS AND DISCUSSION 
A. Experimental setup 

This section provides an overview of the experimental 
environment used to implement and evaluate the 
proposed software cost estimation model. It covers the 
composition of the dataset, preprocessing programs, data 
partitioning strategies, as well as the technical Settings 
for model development and testing. 
 
A synthetic dataset of 500 software development task 
records was generated, incorporating fields such as 
Task_Duration, Num_Components, Complexity_Level, 
Developer_Experience, Unit_Resource_Cost, and 
Risk_Score. The true cost of each task was 
pre-calculated and stored as True_Cost. 

Preprocessing steps included: 
Handling missing values with median/mode imputation; 
Normalizing continuous features to the range [0, 1]; 
Label encoding for categorical features; 
Removing outliers using the IQR method; 

Correlation-based feature selection. 

To achieve accurate training and fair evaluation, the 
dataset is randomly divided into the following subsets: 
70% training set: Used for fitting model parameters; 
15% validation set: For hyperparameter adjustment and 
overfitting control; 
15% test set: Reserved for the final model performance 
evaluation. 

Stratified sampling is adopted to ensure that the 
distribution of the target variable remains consistent 
among the three subsets. The following figure illustrates 
the data partitioning strategy: 

The dataset was split into 70% training, 15% validation, 
and 15% test sets. Four models were implemented: 
Greedy Algorithm (GA): A rule-based estimator using 
weighted feature summation; 
Decision Tree (DT) and Random Forest (RF) regressors; 

Hybrid GA + RF, where GA provides feature weighting 
to initialize RF. 

 

 

Fig. 4. Dataset Splitting Overview 

B. Model Performance 

This section presents the experimental results obtained 
from applying the Greedy Algorithm (GA), Decision 
Tree (DT), and Random Forest (RF) to the software cost 
estimation task. The performance of each model is 
evaluated using four key metrics: Root Mean Square 
Error (RMSE), Mean Absolute Error (MAE), R-squared 
(R²), and Prediction Accuracy (within ±10% tolerance 
range). 

(a) Performance of the Greedy Algorithm 

In this subsection, we assess the performance of Greedy 
Algorithm as a single system for software cost estimation. 
The Greedy Algorithm is used to find best or best 
approximate solutions by minimizing estimation error in 
MFLS via a sequence of locally optimal decisions. 

205



Prediction Accuracy: 
In the test set (15% of data): GA produced: 
Root Mean Square Error (RMSE): 6.12 
MAE: 4.87 
R-squared (R²): 0.741 
'Prediction Accuracy (±10%)': 71.5% 
 
These observations suggest that GA can handle the 
interactions up to a certain order and can also provide a 
reasonable approximation for customers, while it fails to 
handle high-order interactions and/or non-linear patterns 
implied in the dataset. 

Computational time was also measured in addition to the 
accuracy of prediction. In average, the GA optimized the 
following: 

Time Taken: 4.27 seconds (over 30 runs) 

The above shaving runtime indicates that the Greedy 
method is computing-light. But its simplicity could be 
suboptimal to learn global performances while the data 
contains complicated relations. 

(b). Performance of Machine Learning 

In addition to the Greedy Algorithm, two popular 
supervised learning algorithms, including Decision Tree 
Regression and Random Forest Regression, were utilized 
for comparison to reach cost prediction. They were 
trained on the same preprocessed dataset as that used for 
the Greedy Algorithm and tested for comparison with the 
Greedy Algorithm method. 

Decision Tree Regression  
Moderate accuracy. The estimated performance of the 
decision tree is moderate; it is given as: 
RMSE: 5.79 
MAE: 4.53 
R²: 0.768 
Prediction Accuracy (±10%): 73.8% 
 

Although DT provides a basic understanding of 
cost prediction patterns, it is prone to overfitting and has 
limited generalisation when applied to new instances. 
 
Random Forest Regression 

The RF model yielded superior predictive performance 
due to its ensemble structure, which reduces variance and 
improves generalization. The results are as follows: 

RMSE: 4.96 
MAE: 3.85 
R²: 0.821 
Prediction Accuracy (±10%): 78.2% 

RF’s performance surpasses both GA and DT in all 
evaluation metrics, indicating its strong capability in 

capturing non-linear relationships and feature 
interactions. 

 

Fig 5. Performance Comparison of Different Models 

(c).  Performance of the hybrid GA-ML framework 

To overcome the drawbacks of solo heuristic methods 
and machine learning only models, developed a hybrid 
model by incorporating the GA into machine learning 
models, in particular, the Random Forest (RF). This 
method makes use of GA’s ability in minimising the 
search space or determining the optimum combination of 
features and RF’s capability of pattern recognition and 
regression fitting. 

In this combination approach, the Greedy Algorithm was 
used to play one of the two following roles: 
GA has taken the best feature subsets available from the 
input data that can be selected or generated and provided 
as input to the ML model. 
 

When compared to the RF model, the hybrid GA-RF 
model had an overall increase in all the metrics , 
especially in Prediction Accuracy (3.2%) and R² (0.026), 
to indicate enhanced generalisation. Even with execution 
time being enlarged by the extra GA phase, the 
compromise is still accepted in non-real-time cost 
estimates. 

 
Fig 6. Performance Metrics Comparison of GA, RF, and Hybrid Model 
 

(d). Visual summary of result 

As the experimental results need to be summarised and 
reported in a much more intuitive way, this section gives 
an image summary about the main performance KPIs on 
different configurations. Interpretability and comparison 
are further promoted by reporting in standardised bar 
charts and tabular form comparisons between the 
individual and hybrid strategies. 
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Figure 6 shows that the hybrid model (GA + RF) 
performed better than the stand-alone Greedy Algorithm 
(GA) and the Random Forest (RF) models for all 
four-evaluation metrics—RMSE, MAE, R², and 
Accuracy. In particular, the hybrid model yielded 81.4% 
accuracy, higher than the 78.2% and 71.5% obtained 
from RF and GA, respectively. The hybrid model 
performed consistently with the lowest RMSE, MAE 
which means the cost estimation is more stable and 
accurate for the fact that all organizations included. 

Regarding the computational time, as indicated in Figure 
6, the Greedy Algorithm was the fastest (1.26 seconds), 
whereas the hybrid had an overhead (6.41 seconds) due 
to the model integration. However, the potential bias 
reduction of the hybrid model more than justifies this 
added computational burden when used in many realistic 
estimation scenarios. 

Combined evidence from the figures and tables in this 
section shows that there is a trade-off between estimation 
accuracy and computational efficiency, that demonstrates 
the superiority and the shortcoming, respectively, of each 
of the models, and that further asserts the hybrid model 
framework is a promising solution for both accuracy and 
computational efficiency in the software cost estimation. 

Table 1 Results of Models 

Fig 7.  GA vs ML Performance Comparison 

This plot depicts difference between GA and APM of 
the machine learning model (average of DT and RF). 
According to the four evaluation indicators RMSE, MAE, 
R² and Accuracy, it is obvious that the error index of 
traditional GA method is generally higher than the 
average performance of ML method, but the ML method 
has a little bit superiority for estimator accuracy (R²) and 
classifier accuracy. 

The ML average model performs better than GA alone in 
most metrics, suggesting that the ML approach is more 

appropriate for predicting software costs by learning 
from historical data. 

C. Descriptive analysis of model performance

In addition to helping understand the performance of 
each model in prediction, we conducted a comparison 
between the models according to predictive performance 
and the error measurements, including RMSE, MAE, R², 
and wall clock time. 

The hybrid Greedy + RF model held the strongest 
comprehensive performance in all metrics. It had the 
lowest RMSE (4.57) and MAE (3.62) and highest R² 
(0.847) and accuracy (81.4%), which showed high 
prediction accuracy. 

Hybrid achieved the lowest error metrics (RMSE, MAE); 
Hybrid had the highest R² and accuracy; 
RF was consistently better than DT and GA; 
GA, despite its simplicity, provided a fast baseline. 
The hybrid framework effectively combined GA's quick 
estimation and RF's learning capability, showing 
improved generalization over the test data. 

V. CONCLUSION

This work proposed a software cost estimate method 
which combines Greedy Algorithm and supervised 
learning (linear regression) to improve estimation 
accuracy and efficiency. The reason for doing this 
research process is the inability of the currently practiced 
methods, which does not yield consistent estimation 
accuracy, as a result of that, dynamic project 
characteristics and internal independent variables. 
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