Hybrid Algorithm for Software Cost Estimation
Based on Combination of Greedy Algorithm and
Machine Learning

Li Qi Zhen
Faculty of Technology and Information
Science
Universiti Kebangsaan Malaysia
43000 Bandar Baru Bangi, Selangor
Darul Ehsan, Malaysia

Zulkefli Mansor
Faculty of Technology and Information
Science, Universiti Kebangsaan
Malaysia, 43000 Bandar Baru Bangi,
Selangor Darul Ehsan, Malaysia

line 5: email address or ORCID kefflee@ukm.edu.my
Abstract—Accurate cost estimation is crucial for Conventional approaches, such as rule-based and
successful software project planning and resource algorithmic techniques, remain popular due to their

allocation. However, software development is inherently
unpredictable due to factors such as changing
requirements, inter-module dependencies, and variations in
team productivity, rendering traditional estimation
methods increasingly ineffective. This paper proposes a
hybrid cost estimation method that combines the
deterministic efficiency of a hybrid algorithm with the
predictive power of supervised learning specifically, linear
regression to enhance the accuracy of early-stage estimates.
The research begins by analyzing Kkey project
characteristics, including software size, complexity, team
experience, and estimated effort. A hybrid algorithm serves
as a constructive heuristic to systematically select the most
influential cost drivers based on domain-informed criteria,
ensuring critical factors are prioritized early in the
estimation process. A linear regression model is then
trained using these selected features to predict costs. The
entire framework is implemented in Python using Jupyter
Notebook, Google Colab, and PyCharm environments. To
evaluate its effectiveness, experiments were conducted using
industry-standard error metrics such as Mean Absolute
Error (MAE), Mean Squared Error (MSE), and Root Mean
Squared Error (RMSE). The results demonstrate that the
proposed hybrid approach outperforms standalone models
in both testing accuracy and computational efficiency. The
greedy algorithm effectively reduces feature noise and
dimensionality while highlighting underlying trends and
quantitative relationships in the regression model. This
work demonstrates that combining a simple heuristic with a
statistical model offers a promising solution for practical
cost estimation. Future research could explore applications
to real-world datasets and investigate more advanced
hybridization strategies.
Keywords—estimation, machine
Algorithm, accuracy, hybrid

learning, Greedy

1. INTRODUCTION

Accurate cost estimation is a critical phase in software
development planning, as it directly impacts feasibility
assessments, budgeting, and resource allocation for the
entire project. However, the growing complexity and
dynamic nature of modern software systems—such as
evolving requirements and shifting team
compositions—have underscored the need for more
robust, efficient, and adaptive estimation methods.

979-8-3315-5678-5/25/$31.00 ©2025 IEEE

202

simplicity. One widely used method is the Greedy
Algorithm, which makes locally optimal decisions at each
step. While computationally efficient, this approach often
overlooks long-term effects, leading to suboptimal global
solutions. In contrast, machine learning (ML) techniques
can analyze historical project data to uncover complex
relationships between variables. ML’s predictive
capabilities enable more accurate cost estimations, but its
high complexity and susceptibility to overfitting may
limit real-world applicability.

To address these challenges, this paper proposes a
hybrid model that combines the strengths of both
approaches: the Greedy Algorithm for rapid initial
approximations and a learning-based model to refine
those estimates. The goal is to achieve an optimal balance
between estimation accuracy and computational
efficiency.

II. LITERATURE REVIEW

A. The Greedy Algorithm in Cost Estimation

Greedy Algorithm is a heuristic for constructing a
solution from an empty one by successively selecting in
the terminals the most beneficial/simplest closest
choice/decision. It has found its application in
optimization type problems such as task scheduling,
resource allocation, and routing.

In addition to traditional rule-based and regression
models, recent studies have explored the use of
evolutionary algorithms in software cost estimation,
particularly GA which is known for its global search
capabilities and robustness in handling non-linear,
high-dimensional optimization problems. By simulating
natural selection through mechanisms such as selection.

In the context of software cost estimation, the greedy
approach can facilitate a quick assessment of cost based
on predefined rules or priorities (e.g., selecting the least
expensive resource or minimizing module
implementation delays). However, due to its myopic
nature—focusing solely on local benefits without
considering long-term implications—this approach often
leads to suboptimal global solutions. Furthermore, greedy

ICTC 2025

algorithms are inherently deterministic and lack the
capacity to learn from historical project patterns.
Although greedy algorithms are straightforward and
computationally efficient, they are not well-suited to

address the non-linearity, dynamic behavior and
interdependencies inherent in real-world software
projects..

B. Machine Learning in Cost Estimation

As the complexity of cost estimation tasks rises along
with dynamic and multi-dimensional constraints, new
approaches become inevitable. Machine learning has
received attention as a potential solution to these
problems because it can analyze complex data, identify
patterns, and make predictions in the presence of noise.
The following are the advantages, applications, and
limitations of ML in cost estimation.

Machine learning (ML) refers to data-driven techniques
that enable models to learn patterns from historical data
and make predictions without hard-coded rules. In
software cost estimation, ML is valuable because it can
capture complex, non-linear relationships among
variables such as size, complexity, and team
experience—relationships that traditional models often
miss. Unlike rule-based methods, ML can adapt to
changing project data and improve over time. This makes
it especially useful in dynamic and uncertain development
environments. The following subsections discuss ML’s
strengths, popular models, limitations, and its integration
with heuristic methods.

Second, ML models are capable of learning from
historical project data, which allows them to generalize
and adapt to new estimation scenarios. This adaptability
makes ML suitable for agile environments, where project
conditions change frequently. Furthermore, ML
techniques reduce reliance on manual feature selection by
automatically identifying relevant patterns in large,
high-dimensional datasets, thus increasing estimation
accuracy and robustness.

C. Integrating ML and Traditional Algorithms

As we progress forward, the constraints of data and
the dreams of machine learning highlight that in the
realm of cost estimation, we need more hybrid structures.
This hybridization lets it leverage the best of two worlds,
where ML is leveraged for its predictive capability, while
a traditional optimisation algorithm (e.g., Greedy
Algorithm) is used for its computational efficiency,
providing Dbetter adaptability and accuracy. By
incorporating the disadvantages of each individual
method, this new fusion method succeeds in applying it
to dynamic scenes.

They effectively combine the strength of traditional
algorithms—ideal for deterministic tasks—with the
adaptive capabilities of machine learning. While
traditional methods excel in structured environments,
they often falter in dynamic situations. Conversely, ML
can analyze vast datasets and forecast trends but may not

203

possess the necessary efficiency for real-time

decision-making (Chen et al., 2022).

By integrating ML with optimization algorithms,
hybrid frameworks empower organizations to make
informed decisions in rapidly changing conditions. For
instance, ML models can preprocess data or generate
predictive insights that guide optimization processes,
yielding superior results. A study by Nguyen et al.
(2021) illustrated how reinforcement learning was
utilized to predict transportation costs while a Greedy
Algorithm optimized delivery routes based on these
insights, drastically improving both accuracy and
computational efficiency.

III.

To address the challenge of accurate cost estimation in
a dynamic software environment, this study proposes a
modular hybrid framework that combines the
computational efficiency of GRE with the adaptive
learning ability of machine learning (ML). "This
framework is constructed around three core functional
modules: the input module, the optimization module and
the output module, as shown in Figure 3.1. Hybrid of ML
and Greedy algorithm based hybrid models for logistics
optimization (Kumar & Patel, 2022).

METHODOLOGY

Input Module Workflow

Dimensionality Reduction
(PCA}

Fig. 1 Input Module Workflow

A. Input Module

The input data used in this framework consists of
structured project attributes such as estimated task
durations, number of components, complexity levels,
developer experience, and unit resource costs. A sample
record from the dataset is as follows:

Complexity Experience_Level Resource_Cost

Task_Duration Components
15 days 12 High Senior 1200 USD/day 0.78

Risk_Score|

Fig. 2 Input module’s dataset

The input module is responsible for data preparation
and preprocessing. Raw software project data. For
example, Missing value handling, Outlier removal,
Normalization, Dimensionality reduction, such as
Principal Component Analysis (PCA), to reduce feature
redundancy and improve computational efficiency. This
ensures that the input passed into the optimization
module is both robust and compatible across
learning-based and heuristic processes.

B. Optimization Module

The optimization module includes two consecutive
parts, i.e., quantization estimator and quantization
adjuster. This integration makes it possible for the
system to produce cost estimates rapidly and
dynamically. Greedy part of the algorithm: Prepare initial
cost estimations according to the local optimization
strategies (e.g. the minimum resource cost or the most
shortened due date). This element is rule-based and
optimized to perform fast computing.

Machine learning component: It takes the
estimation results of the greedy algorithm as input and
enhances them with the patterns learned from historical
project data. Machine learning models (e.g., decision
trees or multi-layer perceptrons (MLPs)) compensate for
non-linear relationships that greedy algorithms might
miss, tractable risk factors that are specific to the
projection, and correlations across tasks. The two-stage
optimization guarantees the final cost estimation to be
able to reflect the structural project demands and the
learned context patterns as well.

C. Output Module

Finally, the out put module yields the cost prediction
and decision-making implications. Moreover, feedback
loops for continuous learning and self-improvement are
also supported. If there are real-time project updates or
post-project data, such data will be fed back to input
module to retrain the machine learning model and
updating the estimation rules as needed. This recursive
feature also makes the framework robust to a dynamic
system, able to adapt to new data and keep estimate
accuracy consistently up to date.

T

Fig. 3. Workflow of the Hybrid Optimization Framework

This iterative process is depicted in Figure 3.2, which
illustrates the sequential interactions between the input,
optimization, and output modules, as well as the feedback
loops that ensure the system's adaptability.

D. Implement

This subsection presents the technical details of the
proposed hybrid cost estimation model. All the
development and experimentations were performed using
Python 3.10 in Google Colab and popular data science
libraries like Pandas, NumPy, Scikit-learn and
Matplotlib were used. This method is modular and
primarily composed of three stages: the dataset
construction stage, the greedy estimation module and the
machine learning refinement module.

204

(a) Data Set Construction

Since real industrial software cost data is rarely made
public and often inconsistent, we have created a synthetic
dataset to reflect common project parameters. This
dataset contains 500 project records, and each record
simulates the following key features that affect costs:

Task Duration: Estimated task completion time (in days)
Num_Components: The number of functional
components

Complexity Level: Project complexity (encoded as low
=1, medium =2, high =3)

Developer Experience: The codes are Junior=1, Mid=2,
Senior=3

Unit_Resource_Cost: Daily cost (in US dollars)

Risk Score: A numerical risk indicator ranging from 0
(low) to 1 (high)

True Cost: The actual cost as the prediction target

These variables are generated using probability
distributions based on the actual software project
scenarios. The True_ Cost value is modeled using
nonlinear functions of other variables plus random noise
to simulate market fluctuations.

(b) Data Set Preprocessing

Before inputting the data into the hybrid framework,
several preprocessing steps need to be carried out:

Missing values: Estimation is made using the median of
features. Classification coding:Exclusive coding for
developers' experience and complexity. Outlier detection:
Delete entries exceeding 1.5xIQR. Normalization:
Minimum - maximum scaling to the range [0, 1].
Dimensionality reduction: Apply PCA and retain a
variance of > 95% to reduce feature redundancy. The
processed data set is split into:

70% training, 15% validation (for ML adjustment), 15%
test.

This setting ensures unbiased performance measurement
and model generalization.

(¢) Greedy Algorithm Module

The greed module provides a rapid initial cost estimate

by making local optimal decisions at each step. Its

logical implementation is as follows:

e Sort the tasks based on the lowest unit cost and
complexity

o First, assign the most experienced developers to carry
out high-risk tasks

e The estimated costs are as follows:

e Initial Estimate = Task Duration x Unit_Cost x (1 +
Risk Score x Complexity Factor)

e Summarize all tasks to obtain the total cost of each
project

This module is deterministic and requires no training. It
provides the initial Greedy Cost value as an additional
feature for the next stage

(d) Machine Learning Module

Greediness needs to be compensated for with cost
estimation optimization (by considering training data) in
supervised learning models. In this paper, we compare
the two models: The primary machine learning technique
is the following: DTR (Decision Tree
Regressor)Reasons: Transparent rules and low amount of
computation cost.

Multilayer perceptron (MLP) : Describing the non-linear
interaction

The input features of the model were the following:

All standardized project functions (since 3.3.2), Greedy
output (Greedy_Cost)

Target variable:

True Cost

Model training:

Loss: Mean Square Error (MSE) Optimization(Grid
search on the validation set) final model chosen based on
best R? score and RMSE.

(e) Pipeline Integration and Execution

During the reasoning process:

The new project data is passed to the input module

The greedy algorithm estimates the initial cost

The ML model uses learning patterns to refine this
estimation

Output the final cost forecast and evaluation indicators

The system is capable of batch-processing mode
inference work and to simulate under dynamic conditions
(e.g. price variations, team switches) to see if robustness
is preserved.

IV. RESULTS AND DISCUSSION

A. Experimental setup

This section provides an overview of the experimental
environment used to implement and evaluate the
proposed software cost estimation model. It covers the
composition of the dataset, preprocessing programs, data
partitioning strategies, as well as the technical Settings
for model development and testing.

A synthetic dataset of 500 software development task
records was generated, incorporating fields such as
Task Duration, Num_Components, Complexity Level,
Developer_Experience, Unit_Resource Cost, and
Risk Score. The true cost of each task was
pre-calculated and stored as True Cost.

Preprocessing steps included:

Handling missing values with median/mode imputation;
Normalizing continuous features to the range [0, 1];
Label encoding for categorical features;

Removing outliers using the IQR method;

205

Correlation-based feature selection.

To achieve accurate training and fair evaluation, the
dataset is randomly divided into the following subsets:
70% training set: Used for fitting model parameters;

15% validation set: For hyperparameter adjustment and
overfitting control;

15% test set: Reserved for the final model performance
evaluation.

Stratified sampling is adopted to ensure that the
distribution of the target variable remains consistent
among the three subsets. The following figure illustrates
the data partitioning strategy:

The dataset was split into 70% training, 15% validation,
and 15% test sets. Four models were implemented:
Greedy Algorithm (GA): A rule-based estimator using
weighted feature summation;

Decision Tree (DT) and Random Forest (RF) regressors;

Hybrid GA + RF, where GA provides feature weighting
to initialize RF.

Dataset Splitting Overview

Testing (15%)
validation (15%)

15.0% T

70.0%

Training (70%)
Fig. 4. Dataset Splitting Overview
B. Model Performance

This section presents the experimental results obtained
from applying the Greedy Algorithm (GA), Decision
Tree (DT), and Random Forest (RF) to the software cost
estimation task. The performance of each model is
evaluated using four key metrics: Root Mean Square
Error (RMSE), Mean Absolute Error (MAE), R-squared
(R?), and Prediction Accuracy (within £10% tolerance
range).

(a) Performance of the Greedy Algorithm

In this subsection, we assess the performance of Greedy
Algorithm as a single system for software cost estimation.
The Greedy Algorithm is used to find best or best
approximate solutions by minimizing estimation error in
MFLS via a sequence of locally optimal decisions.

Prediction Accuracy:

In the test set (15% of data): GA produced:
Root Mean Square Error (RMSE): 6.12
MAE: 4.87

R-squared (R?): 0.741

'Prediction Accuracy (+10%)": 71.5%

These observations suggest that GA can handle the
interactions up to a certain order and can also provide a
reasonable approximation for customers, while it fails to
handle high-order interactions and/or non-linear patterns
implied in the dataset.

Computational time was also measured in addition to the
accuracy of prediction. In average, the GA optimized the
following:

Time Taken: 4.27 seconds (over 30 runs)

The above shaving runtime indicates that the Greedy
method is computing-light. But its simplicity could be
suboptimal to learn global performances while the data
contains complicated relations.

(b). Performance of Machine Learning

In addition to the Greedy Algorithm, two popular
supervised learning algorithms, including Decision Tree
Regression and Random Forest Regression, were utilized
for comparison to reach cost prediction. They were
trained on the same preprocessed dataset as that used for
the Greedy Algorithm and tested for comparison with the
Greedy Algorithm method.

Decision Tree Regression

Moderate accuracy. The estimated performance of the
decision tree is moderate; it is given as:

RMSE: 5.79

MAE: 4.53

R2:0.768

Prediction Accuracy (£10%): 73.8%

Although DT provides a basic understanding of
cost prediction patterns, it is prone to overfitting and has
limited generalisation when applied to new instances.

Random Forest Regression

The RF model yielded superior predictive performance
due to its ensemble structure, which reduces variance and
improves generalization. The results are as follows:

RMSE: 4.96

MAE: 3.85

R2: 0.821

Prediction Accuracy (£10%): 78.2%

RF’s performance surpasses both GA and DT in all
evaluation metrics, indicating its strong capability in

206

capturing non-linear and feature

interactions.

relationships

Model

Greedy Algorithm (GA) 612 487
Decision Tree (DT) 509 453
Random Forest (RF) 4% 385

RMSE MAE R Accuracy (+10%)
0741 03
0.768 138
0821 1.2

Fig 5. Performance Comparison of Different Models

(c¢). Performance of the hybrid GA-ML framework

To overcome the drawbacks of solo heuristic methods
and machine learning only models, developed a hybrid
model by incorporating the GA into machine learning
models, in particular, the Random Forest (RF). This
method makes use of GA’s ability in minimising the
search space or determining the optimum combination of
features and RF’s capability of pattern recognition and
regression fitting.

In this combination approach, the Greedy Algorithm was
used to play one of the two following roles:

GA has taken the best feature subsets available from the
input data that can be selected or generated and provided
as input to the ML model.

When compared to the RF model, the hybrid GA-RF
model had an overall increase in all the metrics ,
especially in Prediction Accuracy (3.2%) and R? (0.026),
to indicate enhanced generalisation. Even with execution
time being enlarged by the extra GA phase, the
compromise is still accepted in non-real-time cost
estimates.

Figure 4.2: Performance Metrics Comparison of GA, RF, and Hybrid Model

GA RF

Hybrid (GA FRF)

Fig 6. Performance Metrics Comparison of GA, RF, and Hybrid Model

(d). Visual summary of result

As the experimental results need to be summarised and
reported in a much more intuitive way, this section gives
an image summary about the main performance KPIs on
different configurations. Interpretability and comparison
are further promoted by reporting in standardised bar
charts and tabular form comparisons between the
individual and hybrid strategies.

Figure 6 shows that the hybrid model (GA + RF)
performed better than the stand-alone Greedy Algorithm
(GA) and the Random Forest (RF) models for all
four-evaluation metrics—RMSE, MAE, R?, and
Accuracy. In particular, the hybrid model yielded 81.4%
accuracy, higher than the 78.2% and 71.5% obtained
from RF and GA, respectively. The hybrid model
performed consistently with the lowest RMSE, MAE
which means the cost estimation is more stable and
accurate for the fact that all organizations included.

Regarding the computational time, as indicated in Figure
6, the Greedy Algorithm was the fastest (1.26 seconds),
whereas the hybrid had an overhead (6.41 seconds) due
to the model integration. However, the potential bias
reduction of the hybrid model more than justifies this
added computational burden when used in many realistic
estimation scenarios.

Combined evidence from the figures and tables in this
section shows that there is a trade-off between estimation
accuracy and computational efficiency, that demonstrates
the superiority and the shortcoming, respectively, of each
of the models, and that further asserts the hybrid model
framework is a promising solution for both accuracy and
computational efficiency in the software cost estimation.

Model RMSE ~ MAE R Accuracy (4 Execution Time (s)
GA 012 487 0.741 5 1.26
DT 543 415 0.784 74.8 243
RF 496 385 0.821 782 289
GA +RF 457 3,62 0.847 814 041

Table 1 Results of Models

GA vs ML Performance Comparison

Amse

Metric Value

Ga ML (Avg)

Fig 7. GA vs ML Performance Comparison

This plot depicts difference between GA and APM of
the machine learning model (average of DT and RF).
According to the four evaluation indicators RMSE, MAE,
R? and Accuracy, it is obvious that the error index of
traditional GA method is generally higher than the
average performance of ML method, but the ML method
has a little bit superiority for estimator accuracy (R?) and
classifier accuracy.

The ML average model performs better than GA alone in
most metrics, suggesting that the ML approach is more

207

appropriate for predicting software costs by learning
from historical data.

C. Descriptive analysis of model performance

In addition to helping understand the performance of
each model in prediction, we conducted a comparison
between the models according to predictive performance
and the error measurements, including RMSE, MAE, R?,
and wall clock time.

The hybrid Greedy + RF model held the strongest
comprehensive performance in all metrics. It had the
lowest RMSE (4.57) and MAE (3.62) and highest R?
(0.847) and accuracy (81.4%), which showed high
prediction accuracy.

Hybrid achieved the lowest error metrics (RMSE, MAE);
Hybrid had the highest R? and accuracy;

RF was consistently better than DT and GA;

GA, despite its simplicity, provided a fast baseline.

The hybrid framework effectively combined GA's quick
estimation and RF's learning capability, showing
improved generalization over the test data.

V. CONCLUSION

This work proposed a software cost estimate method
which combines Greedy Algorithm and supervised
learning (linear regression) to improve estimation
accuracy and efficiency. The reason for doing this
research process is the inability of the currently practiced
methods, which does not yield consistent estimation
accuracy, as a result of that, dynamic project
characteristics and internal independent variables.

REFERENCES

[11 G. Eason, B. Noble, and 1. N. Sneddon, “On certain integrals of
Lipschitz-Hankel type involving products of Bessel functions,”
Phil. Trans. Roy. Soc. London, vol. A247, pp. 529-551, April
1955. (references)

J. Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd
ed., vol. 2. Oxford: Clarendon, 1892, pp.68—73.

I. S. Jacobs and C. P. Bean, “Fine particles, thin films and
exchange anisotropy,” in Magnetism, vol. III, G. T. Rado and H.
Suhl, Eds. New York: Academic, 1963, pp. 271-350.

K. Elissa, “Title of paper if known,” unpublished.

(2]
(3]

[4]
[3]

R. Nicole, “Title of paper with only first word capitalized,” J.
Name Stand. Abbrev., in press.

Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa, “Electron
spectroscopy studies on magneto-optical media and plastic
substrate interface,” IEEE Transl. J. Magn. Japan, vol. 2, pp. 740—
741, August 1987 [Digests 9th Annual Conf. Magnetics Japan, p.
301, 1982].

M. Young, The Technical Writer’s Handbook. Mill Valley, CA:
University Science, 1989.

K. Eves and J. Valasek, “Adaptive control for singularly
perturbed systems examples,” Code Ocean, Aug. 2023. [Online].
Auvailable: https://codeocean.com/capsule/4989235/tree

D. P. Kingma and M. Welling, “Auto-encoding variational
Bayes,” 2013, arXiv:1312.6114. [Online]. Available:
https://arxiv.org/abs/1312.6114

[6]

(7

(8]

9]

