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Abstract—We tackle character-consistent text-to-image (T2I)
generation in a training-free setting. Shared attention with a
subject mask enforces identity consistency across prompts but
introduces substantial memory and latency overhead at inference.
To mitigate this cost, we augment the stable diffusion baseline
with two accelerations: token pruning, which removes redun-
dant tokens, and adaptive guidance, which skips unnecessary
computation during the diffusion process. Experiments on the
ConsiStory+ benchmark show that our method outperforms
recent state-of-the-art approaches in character-consistent T2I
generation. Notably, it attains lower inference latency than both
prior state-of-the-art methods and the SDXL baseline.

Index Terms—Text-to-image generation, character-consistent
image generation, efficient image generation.

I. INTRODUCTION

Recent advances in generative models [1], [2] enable high-
fidelity image generation. Consequently, text-to-image (T2I)
models [3]-[5] allow users to generate desired realistic images
through text prompt conditions. These T2I models enable users
to generate novel scenes with previously unseen combinations
and generate vivid images across diverse styles [6]. However,
T2I models face persistent difficulties in maintaining character
consistency across different text prompt conditions [7].

The character consistency problem in T2I models refers to
the failure of T2I models to maintain consistent appearances
when generating a series of images from multiple text prompts
with the same character. To address this, recent studies [7]-[9]
propose training-free approaches that enhance character con-
sistency by leveraging tokens from other frames during self-
attention in T2I diffusion models. These methods enable image
generation with consistent characters, but require extensive
memory resources or complex module designs [10], both of
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which lead to increased inference time. Therefore, acceleration
methods for T2I diffusion models need to be combined with
methods that improve character consistency.

Building on recent advances in diffusion acceleration [11]—
[13], we can explore how these methods can be adapted with
character-consistent generation methods. Recently, training-
free acceleration methods have been proposed to reduce
computational costs during inference. First, token pruning
method [14] reduces the number of tokens, considering that
the computational cost of attention layers within diffusion
models increases quadratically with the number of tokens [15].
Second, enhancing classifier-free guidance [16] (CFG) method
[17] can improve the sampling efficiency of diffusion models.

In this work, we apply methods to maintain character
consistency while accelerating image generation. Specifically,
we apply shared attention [8], where current frame query
tokens attend to key and value tokens across other frames.
However, shared attention tends to homogenize backgrounds
across frames. To preserve background diversity, we apply
a subject mask [8] that restricts shared attention to charac-
ter regions in other frames. While shared attention ensures
character consistency, it increases inference time. To address
this, we employ a token pruning method [14] that prunes the
redundant tokens. We also apply adaptive guidance [17] that
skips half of the unconditional passes in CFG. By combining
these components, we achieve both character consistency and
reduced inference time. We validate our approach on the
ConsiStory+ benchmark [10] and compare against state-of-
the-art methods [8], [10], with detailed results in Section IV.

II. RELATED WORK

A. Character Consistency

Character consistency remains a challenging problem when
generating images across different text prompt conditions in
text-to-image (T2I) generation methods [3]-[5]. T2I methods
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Fig. 1. An overview of our method, which consists of three main components: (1) Shared attention with subject mask to ensure character consistency; (2)
Token pruning to prune redundant tokens; (3) Adaptive guidance to reduce CFG computation.

inherently generate each sample independently, making it
difficult to maintain character consistency when generating
images of the same character. This limitation has also led
to difficulties in image personalization [18], [19] and story-
telling applications [20]-[22] both of which require character
consistency. Recent T2I diffusion models handle character
consistency via three main approaches: (1) embedding and
fine-tuning based approaches [23]-[27], which adapts models
to user-specific data by directly modifying model parameters
or learning subject-specific embeddings; (2) prompt-based
approach [10] that enables maintaining consistent character
while generating backgrounds and other elements according to
each prompt when concatenating multiple prompts into one;
and (3) attention-based approaches [7]-[9], which introduce
self-attention consistency modules or shared attention blocks
that propagate character information across frames.

B. Accelerating Image Generation

Image generation speed, along with improvements in char-
acter consistency, is one of the critical factors to consider
in T2I diffusion models. However, the trade-off between
performance and efficiency presents a significant challenge
in diffusion models [28]. The primary causes of generation
slowdowns stem from the diffusion model’s intrinsic com-
plexity and the computational demands during inference. To
overcome these challenges, existing methods mainly focus on
two main approaches: (1) model compression and optimization
approaches [11]-[13] that reduce computational complexity by
optimizing model size and architecture—such as knowledge
distillation that train smaller student models to reduce the
number of sampling steps, as well as neural architecture
search methods that identify more efficient model designs; (2)
approach of reducing computation during inference [14], [17],
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including adaptive guidance that selectively reduces classifier-
free guidance (CFG) computation in later part of denoising
timesteps and token pruning which removes redundant tokens
in attention operations.

III. PROPOSED METHOD

Fig. 1 presents an overview of our pipeline for character-
consistent image generation. We adopt the stable diffusion
architecture [3] as the base image generator, which takes
a set of input prompts and produces corresponding images
via a U-Net backbone. We then incorporate shared attention
and subject masking [8] to enforce character consistency
while preserving semantic alignment between the generated
images and the input prompts. Finally, we integrate token
pruning [14] and adaptive guidance [17] into the generator
to reduce inference-time cost.

A. Character-Consistent Image Generation

Shared attention. Let X; € R"*¢ denote the image-token
sequence of the i-th frame, where n is the number of to-
kens per frame and d is the channel dimension. We obtain
Q;,K;,V; € R*? by applying linear projections to X;.
Aggregating all m frames yields K = [Ky;...;K,,] and
V = [Vy;...;V,,] € RO")xd where [;-] denotes concate-
nation along the token dimension. The ¢-th-frame output Y
of shared attention is given by
T
QK >V
Vd

which extends self-attention by allowing the queries of frame
1 to attend to keys and values aggregated over all m frames.
This cross-frame context couples the generation processes and

Y, = softmax ( (1



TABLE I
QUANTITATIVE COMPARISON WITH STATE-OF-THE-ART METHODS IN
CHARACTER-CONSISTENT IMAGE GENERATION [8], [10], AND SDXL
BASELINE [3]. THE BEST RESULTS ARE DEPICTED IN BOLD AND THE
SECOND-BEST RESULTS ARE UNDERLINED.

Methods ‘ DreamSim | CLIP-I{ CLIP-T 1 ‘ Inference
Time
SDXL [3] 0.3564 0.8705 0.9160 9.8543
Consistory [8] 0.2573 0.9032 0.9236 12.959%
1P1S [10] 0.2040 0.9194 0.8901 20.8879
Ours | 0.2039 0.9244 0.8998 | 9.2517

promotes character-consistent images rather than isolated per-
frame outputs. Therefore, we replace the self-attention layers
in the first and second upsampling blocks of the generator with
shared-attention layers.

Subject masking. While the coupled context induced by
shared attention improves character consistency, it can inad-
vertently reduce diversity yielding similar backgrounds and
layouts, and cause misalignment with the input prompts. To
mitigate these side effects, we adopt subject masking [8],
which restricts shared attention to the subject regions of other
frames. Given a concept token indicating the subject category,
we compute cross-attention weights between this token and the
image tokens of frame ¢. Because the concept token encodes
the subject, these weights are higher over subject regions. We
average the weights to form a score map and binarize it with
thresholding [29] to obtain the subject mask M;. We also
perform mask dropout, randomly zeroing entries with rate a,
to diversify the object-region signal during training. We then
apply M, to shared attention as
®T
X2

QK
Y,; = softma
: < Vi

B. Accelerated Character-Consistent Image Generation

+ log Mi) \Ys )

Token pruning. Token pruning accelerates inference by re-
ducing the number of tokens processed. For the i-th frame’s
tokens X; = {x;1,...,Xin}, we compute each token’s total
similarity to the rest. Specifically, for the k-th token we define
n T
XikXij

<[ 15

+ &k, &k ~N(0,0%). (3

Sik =

j=1
Here, &, is a small Gaussian perturbation that injects stochas-
ticity across time steps, preventing the same tokens from being
repeatedly selected as bases or pruned. Following [14], we
spatially partition the image tokens X; into 2 x 2 groups. For
each group, we select a single base token that maximizes the
total similarity. We then prune the top-p tokens most similar
to the base tokens, where p equals the total number of tokens
multiplied by the pruning ratio. Attention is applied only to
the remaining tokens. After attention, we restore the original
length by filling each pruned position with the output of its
most similar base token. We observed that additional pruning
in the fully connected layer improves speed but degrades
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Fig. 2. Qualitative comparison with state-of-the-art methods in character-
consistent image generation [8], [10] and SDXL baseline [3].

image quality. Therefore, pruning is performed only for the
attention layer.

Adaptive guidance. Given input noise X7 ~ A/(0,I) and a
text condition C, the diffusion model progressively denoises
XT to produce the target image X'. Let X' denote the
image tokens at timestep ¢ € {7, ...,0}. Under classifier-free
guidance (CFG) [16], we combine the conditioned ¢y(X?, C)
and unconditioned ¢(X?, &) predictions from the diffusion
model ey where 6 is pre-trained parameters and @ indicates
no conditioning. CFG improves text alignment and generation
stability. However, it doubles computation burden by evaluat-
ing both branches at every timestep.

As reported in [17], the benefits of CFG diminish as sam-
pling progresses. We therefore adopt adaptive guidance [17]
that skips the unconditional branch in later timesteps:

eg(Xt, @) + wAe
(X, C)

ift>r1

cotg(X", Cw) = ift<r

“4)

where Ae = €9(X*, C) — y(X?, &), w balances the guidance
scale, and 7 is the timestep cutoff. This reduces inference cost
while preserving strong guidance when it matters most.

IV. EXPERIMENTS

In this section, we perform experiments to validate our
method. We first describe the experimental setup. We then
compare with state-of-the-art methods. Finally, we provide an
ablation study of our method.



TABLE II
ABLATION STUDY ON THE THREE MAIN COMPONENTS. THE BEST RESULTS ARE DEPICTED IN BOLD AND THE SECOND-BEST RESULTS ARE UNDERLINED.
THE FINAL SETTINGS ARE HIGHLIGHTED IN LIGHTGRAY.

Components

Shared attention with subject mask Token pruning

Adaptive guidance ‘

‘DreamSim | CLIPIt CLIP-T 1 | Inference
Time

0.3564 0.8705 0.9160 9.8543
v 0.2141 0.9182 0.9169 12.1963
v v 0.2008 0.9265 0.9076 11.9568
v v 0.2132 0.9183 0.9124 9.6894
v v v 0.2039 0.9244 0.8998 9.2517
A. Experimental Setup "dressed in a "in a grassy "wearing a "wearing a

Dataset. To evaluate prompt-image alignment, character con-
sistency, and inference time, we utilize the ConsiStory+ bench-
mark [10]. ConsiStory+ contains 8 superclasses, including
humans, animals, fantasy, inanimate objects, fairy tales, na-
ture, technology, and food. Each superclass contains multiple
concept tokens, where each concept token is provided with
a subject description, a style description, and 5 to 10 setting
descriptions. Prompts are formed by combining a fixed pairing
of a subject description that defines the character and a style
description that specifies its visual representation with multiple
setting descriptions to create various prompts. Using the
images generated from these prompts, we measure character
consistency. ConsiStory+ consists of 192 concept tokens and
contains a total of 1,100 prompts.

Evaluation metrics. Our evaluation protocols follow the met-
rics used in [10]. To evaluate character identity consistency, we
measure DreamSim [30] and CLIP-I [31]. Both DreamSim and
CLIP-I utilize CarveKit [32] to remove image backgrounds
and replace them with random noise. The CLIP-T metric
assesses prompt alignment by measuring the CLIPScore [31]
between the corresponding prompt and generated image. In
addition, we report inference time, which is measured in
second, to assess the efficiency of image generation. The
inference time is obtained by dividing the total duration of
the ConsiStory+ benchmark by the total number of generated
images.

Implementation details. We adopt the experimental setup of
prior work [8]. Specifically, we generate 1024 x 1024 resolu-
tion images using pretrained SDXL [3]. During inference, we
set the parameters to 7 = 25, T = 50, and w = 5.0 in (4).
For the dropout applied to the subject mask, « is set to 0.5.
All experiments are performed on a NVIDIA A6000 GPU.

B. Main Results

Table I presents a quantitative comparison of our method
against other state-of-the-art methods. The compared methods
include Consistory [33] and 1P1S [10]. Since these methods
are based on SDXL, we also compare with the quantitative
results of SDXL. Our method shows the best performance in
DreamSim and CLIP-I, achieving scores of 0.2039 and 0.9244,
respectively. Although the CLIP-T score of 0.8998 falls below
Consistory and SDXL, it shows improvement over 1PIS. In
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Fig. 3. Qualitative results across combinations of the main components. SA
and SM denote shared attention and subject mask, respectively.

terms of generation speed, our method achieves an inference
time of 9.2517 seconds, running 55.7% faster than 1P1S.

Fig. 2 shows generated images using our method and state-
of-the-art methods. We evaluate against Consistory [33] and
1P1S [10], along with SDXL as the baseline model. The results
show that while other comparison methods generate griffins
with incomplete legs or bodies, our method creates complete
and consistent subjects. Fig. 3 presents a comparison of how
our methods affect the quality of the generated images. In the
first row, SDXL generates puppies with different appearances
across frames. The second row shows the effect of applying
shared attention with a subject mask. This visually confirms
that improves character consistency. Also, the third row shows
that adding adaptive guidance and token pruning makes very
little visual difference. This result shows that adaptive guid-
ance and token pruning, which accelerate image generation,
do not substantially compromise output quality.

C. Ablation study

Table II summarizes ablation study to example the contri-
bution of building components: shared attention with subject
mask, token pruning, and adaptive guidance.

Shared attention with subject mask. Compared to the first
row, the second improves DreamSim, CLIP-I, and CLIP-



T by 0.1423, 0.0477, and 0.0009, respectively, indicating
better subject consistency and prompt alignment. These gains
increase inference time by 23.8% due to the added cost of
shared attention.

Token pruning. The third row shows the impact of token
pruning. Compared to the second row, token pruning made
generation 0.2395 seconds faster. In addition, token pruning
can be combined with adaptive guidance to achieve even more
substantial speed improvements.

Adaptive guidance. The fourth row demonstrates the impact
of adaptive guidance: relative to the second row, generation is
faster by 2.5069 seconds. Our final configuration (last row)
applies all three components; versus the first row, Dream-
Sim improves by 0.1525, CLIP-I by 0.0539, while CLIP-T
decreases by 0.0162. Moreover, relative to the second row,
the inference-time penalty of shared attention is mitigated by
24.1%, from 12.1963 seconds to 9.2517 seconds.

V. CONCLUSION

In this paper, we applied shared attention with subject
mask, token pruning, and adaptive guidance components to
enhance both character consistency and image generation
speed. Experiments showed that our method achieves compa-
rable performance with faster generation speed compared to
state-of-the-art methods. Notably, our method achieved faster
inference time than the SDXL baseline. Furthermore, ablation
studies further confirmed the individual contributions of our
components. These results showed that the generation speed
degradation caused by shared attention for character consis-
tency can be overcome by combining acceleration components
with marginal performance degradation.
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