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Abstract—Video scene graphs capture objects, represented as
nodes and their temporal relationships, providing a structured
representation for video understanding. However, constructing
large-scale annotated datasets is challenging in specialized do-
mains where real-world data collection is infeasible, such as the
military domain. In this paper, we propose a temporal prompting
framework for vision-language models to generate consistent
video scene graphs. Specifically, our framework ensures the tem-
poral consistency of objects and their relationships, preserving
the meaning of each frame and the overall temporal context. Our
temporal prompting strategy leverages previous-frame tracking,
object states, and relational context to enable consistent relational
annotations. The framework comprises two steps: detection and
alignment, and relation estimation and alignment. We evaluate
the framework using two metrics, frame-level recall and con-
tinuity recall, to assess the consistency of relationships in video
scene graphs. Experiments on a public video dataset demonstrate
that our temporal prompting approach yields more continuous
relationship predictions and achieves better overall performance
compared to baseline prompting. These results highlight the
framework’s potential for producing training-ready video scene
graph datasets, particularly in domains with scarce annotated
data.

Index Terms—Video Scene Graph, Scene Graph Generation,
Vision-Language Model, Prompt Engineering

I. INTRODUCTION

Video scene graphs extend traditional scene graphs by rep-
resenting not only object relationships but also temporal and
action-based interactions [1]. While scene graphs are limited
to single-frame understanding, video scene graphs incorporate
spatiotemporal information, enabling richer comprehension of
the entire scene. This spatiotemporal information is maintained
across frames by assigning unique identifiers to objects using
tracking algorithms [2], ensuring the continuity of object
information over time.

Training data for video scene graphs typically include both
detected objects and their tracking information, along with re-
lationships defined across frame segments [3]. An example of
inter-frame relational information from the VidOR dataset [4]
is shown in Fig. 1. Since object actions and movements are rel-
atively time-invariant in consecutive frames, their relationships
should also remain time-consistent. However, single-image-
based relationship extraction using vision–language models
introduces inconsistencies: semantically identical relationships
can be expressed differently across consecutive frames [5].

Fig. 1. Example of inter-frame relational information of objects in a video
scene graph.

For example, the spatial relationship between two objects may
be labeled as “near” in one frame and “next to” in the next,
reducing label consistency and increasing noise.

To address this issue, we propose a novel temporal prompt-
ing framework that operates in two main steps. First, our
framework performs detection and alignment to extract object
and tracking information from video frames. This allows us to
use an open-vocabulary detection algorithm while maintaining
object continuity [6]. Second, our framework performs relation
estimation and alignment. By leveraging both current and
previous frame information, the framework explicitly incor-
porates temporal continuity during relation inference. As a
result, our approach can effectively maintain the consistency
of relationship representations across frames.

The constructed temporal prompts were compared against a
baseline approach that does not utilize information from previ-
ous frames. The performance was evaluated on a public video
dataset using both frame-level recall and continuity recall to
assess the accuracy and temporal consistency of the predicted
relationships. Our experimental results demonstrate that the
temporal prompting approach significantly outperforms the
baseline, highlighting its potential for generating high-quality
training data for video scene graph tasks.

II. RELATED WORK

A. Scene Graph Generation

Scene Graph Generation (SGG) aims to represent an image
as a structured graph, where nodes correspond to objects
and edges denote semantic relationships [7]. Early approaches
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Fig. 2. Overview of our proposed framework.

relied primarily on supervised learning with large-scale anno-
tated datasets such as Visual Genome [8]. While subsequent
studies focused on improving relationship prediction accuracy
and mitigating long-tail distributions, these methods are fun-
damentally limited to single-frame understanding and do not
account for temporal dynamics essential for video analysis.

B. Video Scene Graph Generation

Extending SGG to videos introduces additional challenges,
including temporal consistency and dynamic interactions.
Video Scene Graph Generation (VidSGG) methods aim to
capture evolving object states and relationships across frames.
Recent works address temporal coherence through trajectory-
level reasoning, spatio-temporal graph modeling, and leverag-
ing motion cues to enhance relation prediction. However, many
approaches require large-scale annotated video datasets or
specialized architectures [9], whereas our framework leverages
vision-language model (VLM) prompting to achieve a tempo-
rally consistent relation inference in a data-efficient manner.

C. Open-Vocabulary Object Detection

Traditional object detection models are constrained to fixed
categories defined by training datasets. Open-Vocabulary Ob-
ject Detection (OVOD) leverages vision-language pretraining
(e.g., CLIP, OWL-ViT, Grounding DINO) to recognize unseen
categories specified via text prompts [10]–[12]. This paradigm
enables zero-shot or few-shot recognition, facilitating scalable
scene graph construction without reliance on closed-set de-
tectors. In our framework, OVOD allows flexible detection of
objects without additional model retraining, thereby reducing
computational overhead.

D. Object Tracking

Object tracking ensures consistent identification of objects
across video frames, which is crucial for maintaining coherent
video scene graphs. Classical methods include correlation
filters and Siamese-based trackers, while modern approaches
integrate deep learning with appearance and motion cues.

Trackers such as DeepSORT remain widely used due to their
simplicity, stability, and ability to assign consistent object IDs
across frames [13], supporting reliable relation inference over
time.

E. Vision-Language Models and Temporal Prompting for Re-
lation Consistency

Vision-language models have demonstrated effectiveness in
refining scene understanding by aligning visual content with
textual descriptions. Prompt engineering techniques further
improve zero-shot generalization and facilitate explainable
reasoning [14]. However, existing prompting methods often
treat frames independently and fail to explicitly enforce tem-
poral consistency of relationships. Our work introduces a
temporal prompting strategy that incorporates previous-frame
information into VLM prompts, ensuring consistent relational
predictions across video sequences and addressing this gap.

III. PROPOSED METHOD

The proposed temporal prompting framework consists of
two main steps: detection and alignment, and relation es-
timation and alignment. An overview of the framework is
illustrated in Fig. 2. The following sections describe each step
in detail.

A. Step 1: Detection and Alignment

The first step aims to extract object information and main-
tain temporal alignment across consecutive frames. For object
detection, we adopt an open-vocabulary approach, allowing
recognition of a wide range of object classes without additional
training. A predefined set of object classes is provided as input,
enabling the extraction of class labels and bounding boxes
for each frame. We employ Grounding DINO and OWL-ViT
for detection and find that Grounding DINO exhibits better
compatibility with the tracking model.

To ensure temporal continuity, each detected object is
assigned a unique tracking ID using the DeepSORT tracker.
Both the object detection outputs and tracking information,
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including object trajectories and unique IDs, are temporarily
stored. This temporary storage enables efficient retrieval of
previous frame information for subsequent relation inference
in Step 2. While DeepSORT is used in this work, more
advanced tracking algorithms could be employed in future
extensions to further enhance temporal alignment.

B. Step 2: Relation Estimation and Alignment

In the second step, the temporarily stored object and track-
ing information from Step 1 are utilized to construct prompts
for the VLM, specifically Gemma-3 [15]. By incorporating
both current frame information and previously stored data, the
framework explicitly accounts for temporal continuity during
relation inference.

The temporal prompt construction is designed as follows:
• First-frame prompt: Since no prior frame exists, the

VLM infers relationships solely based on the current
frame’s object information.

• Subsequent-frame prompt: For all subsequent frames,
the VLM receives tracked object IDs, bounding boxes,
and previously inferred relationships from the temporary
storage. This enables the model to reason about rela-
tionships in a temporally coherent manner, maintaining
consistency while adapting to dynamic changes in the
scene.

Through this two-step process, the framework ensures that
relationship representations remain coherent across frames,
effectively preserving temporal consistency while capturing
dynamic interactions in video sequences.

IV. EXPERIMENTS AND RESULTS

To evaluate the performance of our proposed framework, we
conducted experiments comparing two prompting strategies
under a consistent configuration to ensure reproducibility.

A. Experimental Setup

We evaluated our framework using a subset of the public Vi-
dOR dataset, which provides ground truth (GT) annotations for
relational descriptions essential for evaluation. Video frames
were extracted according to the original FPS of each video.
The following configuration was applied:

• Object Detection and Tracking: Grounding DINO was
used for open-vocabulary object detection, and Deep-
SORT was adopted to assign consistent tracking IDs
across frames.

• Relation Inference: Gemma-3-4B VLM was employed to
extract relational descriptions.

B. Experimental Design

We compared two primary prompting strategies to investi-
gate the effect of temporal consistency on relation prediction
accuracy:

1) Baseline Prompt (Frame-Only): Relations were in-
ferred using only the current frame’s object and track-
ing information, without leveraging any previous frame

data. This approach is analogous to conventional single-
image-based methods.

2) Temporal Prompt (with History): Relations were in-
ferred by integrating previously predicted relation in-
formation along with the current frame’s object and
tracking IDs. This strategy allows the model to capture
changes in relationships over time while maintaining
temporal continuity.

Assuming reasonably accurate object detection and tracking,
our evaluation focuses on the quality of the relations predicted
by the VLM. To measure the effect of temporal consistency
explicitly, we employed Continuity Recall, in addition to the
standard frame-level Recall. Continuity Recall quantitatively
assesses how consistently the same object relationships are
predicted across consecutive frames, providing a direct mea-
sure of the benefit of temporal prompting.

C. Evaluation Metrics
To evaluate the performance of our video-based scene graph

generation framework, we adopt recall-based metrics that
quantify the accuracy of predicted relations against the ground
truth (GT). Recall is calculated as:

Recall =
Number of True Positives (TP)

Number of True Positives (TP) + Number of False Negatives (FN)
. (1)

Note that conventional video scene graph models often
use Recall@k, which relies on model confidence scores to
rank predictions. However, our VLM-based approach does not
output confidence values for predicted relations, making Re-
call@k inapplicable. Instead, we report frame-level predicted
recall, which provides a similar measure of prediction accuracy
per frame without requiring confidence scores.

1) Frame-level Recall: Frame-level recall measures predic-
tion accuracy on each video frame.

a) Micro Frame-level Recall: aggregates all frames:

Frame-level Recallmicro =

∑
t∈T |GTt ∩ Predt|∑

t∈T |GTt|
. (2)

b) Macro Frame-level Recall: averages per-frame recall:

Frame-level Recallmacro =
1

|T|
∑
t∈T

|GTt ∩ Predt|
|GTt|

. (3)

Here, T denotes the set of all frames in the video. Micro
recall reflects the overall proportion of correctly predicted
relations, while macro recall captures the average performance
per frame. In these definitions, the intersection GTt ∩ Predt
represents the set of relations in frame t that are correctly
predicted by the model, i.e., relations that appear both in the
ground truth annotations and in the model’s predictions.

2) Continuity Recall: Continuity Recall evaluates how con-
sistently the predicted relations are maintained across consec-
utive frames. This metric allows comparison of the model’s
performance when previous frame information is incorporated
versus when it is not, highlighting the effect of temporal
consistency rules.
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a) Micro Continuity Recall: considers all relations across
frames:

Continuity Recallmicro =

∑
r∈R Number of consecutive frames correctly predicted∑

r∈R Number of GT frames
.

(4)

b) Macro Continuity Recall: averages the consistency
per relation instance:

Continuity Recallmacro =
1

|R|
∑
r∈R

Number of consecutive frames correctly predicted
Number of GT frames for r

.

(5)

Here, R denotes the set of all relation instances in the video.
Micro continuity recall reflects the total proportion of correctly
maintained relations, while macro continuity recall captures
the average consistency per relation instance.

D. Results and Discussion

Table I presents the experimental results. Frame-level recall
indicates that the temporal prompting strategy slightly outper-
forms the baseline (frame-only) prompting approach. More
notably, continuity recall shows a substantial improvement,
demonstrating that incorporating information from previous
frames significantly enhances temporal consistency.

TABLE I
COMPARISON OF BASELINE (FRAME-ONLY) AND TEMPORAL PROMPTING

STRATEGIES IN TERMS OF FRAME-LEVEL AND CONTINUITY RECALL.

Metric Baseline Temporal
Frame-level Recall (Micro) 0.1690 0.1960
Frame-level Recall (Macro) 0.1825 0.2088
Continuity Recall (Micro) 0.0704 0.1595
Continuity Recall (Macro) 0.0216 0.1418

Although improvements in frame-level recall are modest,
continuity recall demonstrates the advantage of temporal
prompting in maintaining consistent relational predictions.
As shown in Figure 3, the VLM often infers relations that,
while ignoring exact object positions, provide richer and more
semantically meaningful descriptions of the scene, indicating
that the proposed framework captures relational information
beyond simple spatial arrangements.

Fig. 3. Comparison of scene graphs generated by the VLM-based approach
and the ground truth over a specific segment of the evaluation dataset.

V. CONCLUSION

In this study, we propose a framework for video scene graph
generation using temporal prompting with vision-language
models. While improvements in frame-level recall are modest,
our results show a clear advantage in maintaining consistent
relational predictions, as evidenced by significant gains in
continuity recall. Moreover, the VLM demonstrates the ability

to infer relations that are semantically richer and more inter-
pretable, highlighting its potential to provide valuable rela-
tional information for video scene graph generation. Although
our experiments were conducted on public video datasets, we
also confirmed the framework’s applicability on simulation-
generated videos, indicating a promising direction for future
work. Leveraging larger-scale simulation datasets could not
only expand training resources but also support the stable
training of larger models, paving the way for broader real-
world applications.
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technical report,” arXiv preprint arXiv:2503.19786, 2025.

42


