Top-Down Data Generation Using
Vision—-Language Models for Object Detection
in Constrained Battlefield Environments

Yerin Kim*f, Jaeuk Baek*, Donggyu Choi*, and Chang-eun Lee*'
*Digital Convergence Research Laboratory, ETRI, Daejeon 34129, Korea
TUniversity of Science and Technology, Daejeon 34113, Korea
{imyeslin, Jjubaek, dgchoi, celee}@etri.re.kr

Abstract—In this paper, we propose a novel object detection
framework based on Vision—-Language Models (VLMs). The
framework integrates synthetic top-down image generation, au-
tomatic object labeling, and efficient composition of real and
synthetic data for robust model training. Specifically, ground-
view data are collected using mobile robots, and VLMs are
employed to transform this data into high-quality synthetic top-
down images. We optimize both positive and negative prompts in
VLMs to maximize image quality. The generated outputs are then
combined with real top-down images to train the object detection
model. To automate object labeling, we utilize the Grounding
DINO model, a vision-language object detector, and apply data
augmentation techniques to improve generalization. Through a
series of experiments, we investigate the impact of different
synthetic-to-real image ratios in the training set and identify
the optimal combination through quantitative performance anal-
ysis. Experimental results demonstrate the effectiveness of the
proposed framework in generating high-quality synthetic top-
down view data and in enhancing object detection performance
in constrained battlefield environments.

Index Terms—Vision-Language Models (VLMs), top-down
images generation, object detection, synthetic data, battlefield
environments

[. INTRODUCTION

Compared to ground-view images, top-down images of-
fer a wider field of view and an unobstructed line-of-sight
(LOS) perspective, which can significantly improve both sit-
uational awareness and object detection. However, in indoor
battlefield environments where CCTV infrastructure is absent
and aerial platforms cannot be deployed, acquiring top-down
images remains extremely challenging. Recent advances in
Vision—Language Models (VLMs) [1] enable the synthesis
of realistic top-down images from readily available ground-
view data, thereby reducing the dependence on large-scale
manual data collection. In this paper, we propose a VLM-
based approach that generates synthetic top-down images from
ground-view inputs and integrates them with real images in
varying proportions for model training. We systematically
evaluate object detection performance to rigorously assess
the practical feasibility and effectiveness of incorporating
synthetic top-down images into training pipelines under con-
strained battlefield conditions.
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II. RELATED WORK

In this section, we review a series of techniques for gen-
erating synthetic data, focusing on their applicability and
performance. Particular emphasis is placed on their feasibility
and robustness in constrained environments.

A. Image to 3D

« Stable-Point-Aware-3D [2]: This technique improves ge-
ometric accuracy by aligning multi-view features, but the
generated point clouds occasionally exhibit artifacts such
as scattered points. Furthermore, extracting precise color
and material information from a single image remains
challenging. When applied to full-length images, environ-
mental factors such as smoke, dust, and lighting further
exacerbate these instabilities, consequently reducing the
reliability of the reconstruction results.

PartPaker [3]: Objects are segmented into part-level
units to facilitate reconstruction, with segmentation accu-
racy critically depends on input data quality. Hidden areas
and indistinct boundaries pose substantial challenges to
accurate segmentation. In complex environments such as
battlefields, partial occlusions and damaged structures
often result in incomplete or distorted object forms,
increasing the risk of segmentation errors.

Instant Mesh [4]: High-quality meshes can be rapidly
generated from a single image. Performance declines
significantly in complex or occluded scenes. Achieving
more accurate results requires images obtained from
multiple viewpoints. In battlefield environments, where
entities such as ground robots are present, relying only
on single-view input makes reliable reconstruction of the
complete scene structure challenging.
FLUX.1-Kontext-dev [5]: By leveraging a diffusion-
based virtual camera framework, this method performs
prompt-based synthetic view generation, producing high-
quality perspective transformations such as top-down
views from single ground-level images. It effectively
maintains visual consistency in terms of object scale,
orientation, and illumination, thereby making it highly
suitable for synthetic data generation and augmentation
in constrained environments.
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Fig. 1. Overall Process of the Proposed VLMs-Based Synthetic Data Generation and Object Detection Pipeline.

In summary, existing image-to-3D techniques have strengths
and limitations. Stable-Point-Aware-3D [2] enhances geomet-
ric alignment but is vulnerable to noise, while PartPaker
[3] enables part-level modeling but suffers under occlusion.
Instant Mesh [4] can rapidly generate meshes from sin-
gle images, though it generally requires multi-view inputs.
FLUX.1-Kontext-dev [5] performs prompt-driven synthetic
view generation, producing top-down views from ground-level
images. These characteristics highlight the need for more
robust approaches when applying synthetic data generation in
constrained battlefield environments.

B. Stable Virtual Camera

A viewpoint transformation framework operates directly on
2D images with depth or feature guidance [6]. It preserves
object scale, spatial arrangement, and texture fidelity. Multiple
images are required for generating top-down views without full
3D reconstruction. When the disparity between the input and
target viewpoint is large, results may degrade. In scenes with
many complex objects, viewpoint transformation can cause
spatial and boundary errors.

C. Vision-Language Model (VLMs)

Vision-Language Models [1] leverage multimodal inputs in-
tegrating visual and textual information to perform generative
tasks. This paradigm enables the transformation of ground-
view images into synthetic top-down views while preserving
scene structure. As it does not rely on multi-view inputs, this
approach is suitable for constrained battlefield environments.
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III. PROPOSED FRAMEWORK

The proposed framework consists of three stages: synthetic
data generation, dataset construction, and model training and
evaluation, as summarized in Figure 1.

A. Synthetic Data Generation

We adopt the VLM, i.e., FLUX.1-Kontext-dev [5], to gen-
erate synthetic top-down view images, where various prompts
and negative prompts are analyzed and used to convert ground-
view images into top-down views. To do this, we assume the
virtual camera configured at a height of 3 m above the ground
with an elevation angle of approximately 68°, while zooming
or reframing is prohibited. A unified prompt template was
applied to enforce global constraints on camera viewpoint and
scene fidelity:

Change the camera viewpoint to approximately 68°
elevation, slightly tilted forward, at a height of
approximately 3 m above the floor. The environment
consists of a room with a ceiling height of about
3.6 m and a standard door height of approximately
2.0 m; floor tiles measure roughly 60 cm each. A
24 mm-equivalent wide-angle field of view without
zoom was used. The entire floor area is captured
within the frame without cropping or reframing. All
existing objects were preserved in their original po-
sitions, sizes, orientations, illumination conditions,
and textures. No new objects were introduced during
image synthesis.



TABLE I
PROMPTS AND NEGATIVE PROMPTS FOR PRESERVING ORIGINAL OBJECT PROPERTIES IN SYNTHESIZED TOP-DOWN VIEW IMAGE GENERATION.

Object Input Output Prompts Negative Prompts
“Object 1 in a top-down “No added grenades, no added
Obiect 1 perspective, keeping its size, mines, no duplication, no
] position, and layout as in the truncation, no hallucinated
original scene.” Object 1.7
Ob]ept 2in a. tOP._ down “No added guns, no added Object
. perspective, keeping its shape, .
Object 2 . X .2 . 2, no scopes, no bipods, no
orientation, and position as in the L o,
. » duplication, no truncation.
original scene.
“Object 3 (e.g., jerry cans,
chemical drums) in a top-down “No added containers, no added
Object 3 perspective, keeping their number, drums, no chemical symbols, no
scale, and layout as in the original duplication, no truncation.”
scene.”
_Ob]ect 4(eg., sandbags, bame%rs) “No added sandbags, no added
. in a top-down perspective, keeping . o
Object 4 . barriers, no duplication, no
their arrangement and appearance L,
. .. " rearrangement, no truncation.
as in the original scene.
“Object 5 in a top-down “No added Object 5, no added
. perspective, keeping its size, windows, no hallucinated handles
Object 5 - . . .
position, and alignment with the or locks, no truncation, no
wall as in the original scene.” duplication.”
Object 6 clee}rly on the floor ”No Object 6 with three wheels,
from an oblique top-down . .
. . S no Object 6 with four wheels, no
Object 6 perspective, keeping its . .
. multi-wheeled Object 6, no
appearance and layout as in the . "
- " many-wheeled Object 6.
original scene.

Table I summarizes the object-specific prompt variations for
six target objects, and each prompt is designed to preserve its
original properties. The generated images were subsequently
integrated with real-world data in varying ratios for perfor-
mance evaluation. To ensure reliability, Mean Square Error
(MSE) (< 650) [7] and Structural Similarity Index Measure
(SSIM) (> 0.8) [8] thresholds were applied to filter out
duplicate and low-quality samples.

B. Dataset Construction and Augmentation

In this section, a training dataset is created by integrating
synthetic and real images. Specifically, synthetic images gen-
erated from VLM model are automatically labeled through
automatic annotation with Grounding DINO [9]. Approxi-
mately 1,800 images were augmented to improve robustness
using Albumentations [10] (horizontal flip, elastic and affine
transforms) and InstructPix2Pix [11] (night and dust effects).
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C. Model Training with Synthetic—Real Ratios

In the final phase of our framework, the object detection
model is trained using various synthetic-to-real image ratios
(0:10, 2:8, 5:5, 8:2, 10:0). For each ratio, a total of 10,000
samples are utilized. We assess the extent to which the gen-
erated synthetic top-down images can effectively complement
real data in the training process.

IV. EXPERIMENTS AND RESULT

A. Experimental Setup

All experiments were conducted under a consistent hard-
ware and software environment with an NVIDIA RTX 5070
Ti GPU, Ubuntu 20.04 LTS, CUDA 12.8, and Python 3.9. The
object detection framework was implemented using YOLOX-
S [12] as the baseline detector and trained for 300 epochs.
Training was performed with a batch size of 16.



TABLE 11
OBJECT DETECTION PERFORMANCE (MAP) ACROSS
SYNTHETIC-TO-REAL DATA RATIOS

Ratio
(Synthetic:Real) mAP  APso  AP7;  APs APy AP
0:10 82.5 99.0 94.0 70.7 75.3 87.7
2:8 72.9 90.1 82.4 38.8 62.5 75.6
5:5 70.4 89.6 83.0 67.8 68.0 80.8
8:2 72.5 90.1 82.0 68.4 67.9 75.4
10:0 88.5 98.6 96.2 65.0 80.0 88.4

TABLE IIT

QUALITATIVE RESULTS OF MODELS TRAINED WITH VARIOUS
SYNTHETIC-TO-REAL DATA RATIOS

Similar Environment

Dissimilar Environment

8:2(Synthetic-to-Real)

B. Quantitative Evaluation

Quantitative results are summarized in Table II, showing ob-
ject detection performance across models trained with varying
synthetic-to-real (S:R) ratios. Similar performance is observed
for most metrics except small object mAP. Using only real
data (0:10), the model achieved an mAP of 82.5 with AP50
and AP75 of 99.0 and 94.0, respectively, while small object
accuracy was lower (APg 70.7). Using only synthetic
data (10:0) resulted in the highest overall mAP (88.5) and
large-object accuracy (APy = 88.4), but weaker small-object
performance (APg = 65.0). Balanced ratios (5:5, 8:2) yielded
stable results across scales, improving small object accuracy
(APg up to 68.4).

This result suggests that while synthetic data can effectively
complement real data, the proportion of small objects in the
synthetic dataset was relatively low. This imbalance likely
reduced the model’s exposure to small-object patterns during
training, leading to degraded small-object detection perfor-
mance. These findings highlight the importance of controlling
object-size distributions when generating synthetic data for
object detection tasks.
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C. Qualitative Evaluation

We compare the object detection results of models trained
with real data only (left) and with a mix of synthetic and
real data (8:2 ratio, right) in both similar and dissimilar test
environment. Both models exhibit comparable performance
in similar environment, whereas the model trained with the
mixed dataset demonstrates superior detection performance
in dissimilar environment. As shown in Table III, the in-
clusion of synthetic data exposes the model to a broader
range of variations in lighting conditions, background clutter,
and object orientations. This increased exposure enables the
model to maintain robust detection performance even under
challenging battlefield-like conditions, such as the cluttered
backgrounds and varying object positions illustrated in the
dissimilar environment examples.

The diversity introduced by synthetic data helps the model
generalize better to unseen scenarios by simulating conditions
that are not fully represented in the real dataset. Incorporating
synthetic images enhances the model’s robustness and reduces
overfitting to specific environmental factors.

V. CONCLUSION

We proposed a Vision—Language Model (VLM)-based pre-
processing framework [1] for generating synthetic top-down
view data for unmanned systems operating in constrained
battlefield environments. Using optimized prompts and neg-
ative prompts [5], we generated synthetic top-down images
and combined them with real images captured by a tripod
to train YOLOX-based object detection models [12]. Experi-
ments showed that mixing synthetic and real data improved
detection performance across dissimilar environments. The
method also maintained stable detection performance under
data-scarce conditions, demonstrating the practical value of
synthetic data in augmenting limited real-world datasets. This
study highlights the potential of prompt-driven synthetic data
generation as an effective means of reducing the reliance on
costly and time-consuming real data collection. The results
demonstrate that synthetic data can complement real data with-
out degrading performance, even when real data are limited,
thereby supporting the scalability of object detection systems
for battlefield-related applications. Furthermore, the proposed
framework can serve as a flexible preprocessing pipeline that
can be adapted to various types of visual data and extended
to other perception tasks beyond object detection.

In future work, we will evaluate our framework under more
diverse battlefield-like conditions, including outdoor occlu-
sions, dynamic lighting, and cluttered or congested scenes. We
will also introduce data augmentation techniques specifically
tailored for small objects to mitigate the observed performance
degradation in small-object detection. Additionally, we plan
to explore multi-scale training strategies and incorporate fine-
grained supervision to further enhance small-object detection
performance. These efforts will help establish a more robust
and scalable pipeline for reliable object detection in real-world
battlefield environments.
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