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Abstract—This paper addresses the challenge of effectively
fusing visible and infrared images for robust object detection
under varying lighting conditions. Due to their distinct
characteristics, existing methods often struggle to integrate
the complementary information from these modalities fully. To
overcome these limitations, this work introduces the Multi-Scale
Attention Fusion Transformer (MAFT), which improves feature
integration at the mid-level feature stage (P4/16). Unlike previous
transformer-based approaches that apply uniform fusion across
multiple levels, MAFT focuses on P4/16, incorporating multi-scale
attention mechanisms to refine feature extraction and strengthen
RGB-IR fusion. This approach results in more precise object
detection, particularly for small and low-contrast targets.
Evaluations on the VEDAI, FLIR-Aligned, and KAIST datasets
show that MAFT achieves state-of-the-art mean Average
Precision (mAP) performance while maintaining competitive
inference speed, making it suitable for real-time applications.

Index Terms—Multispectral fusion, object detection, RGB,
Infrared, Deep Learning, Transformers, Multi-Scale attention

I. INTRODUCTION

Multispectral object detection, particularly the fusion
of visible (RGB) and infrared (IR) images has gained
increasing attention due to its robustness in challenging
lighting conditions. Applications such as autonomous driving,
surveillance, and aerial reconnaissance benefit from combining
the complementary information from both modalities. RGB
images offer high spatial detail but are highly sensitive to
lighting conditions. At the same time, IR captures thermal
variations, making objects visible in low-light environments.
However, effectively integrating these modalities remains
a challenge due to differences in spatial resolution, noise
characteristics, and the need for efficient real-time processing.

Fusion approaches can be classified into early, middle,
and late fusion [1]. Early fusion combines raw data from
both modalities at the input level, potentially preserving
rich information but introducing difficulties in handling
varying spatial resolutions and noise characteristics. Late
fusion aggregates features at higher network stages, after
modality-specific feature extraction, and may lose some
synergistic benefits of the complementary information.
In contrast, middle fusion, which combines features at
intermediate stages of the network, allows for integrating
complementary strengths while maintaining the distinct
characteristics of each modality. This approach is efficient
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for multispectral object detection as it ensures that both
modalities contribute meaningfully to the final output without
overwhelming the network with unprocessed raw data or
losing vital information.

Deep learning-based methods have made significant
progress in multispectral fusion. CNN-based models such as
DenseFuse [2] and INSANet [3] integrate RGB and IR features
but often lack global contextual understanding. More recent
transformer-based architectures, such as the Cross-Modality
Fusion Transformer (CFT) [4], enhance feature interaction by
utilizing self-attention mechanisms and hierarchical fusion at
P3/8, P4/16, and P5/32. However, the effectiveness of fusion
at each level varies, and current methods do not fully exploit
the most informative stages.

This paper introduces a Multi-Scale Attention Fusion
Transformer (MAFT), specifically designed to improve
feature integration at P4/16, where crucial mid-level
features are extracted. Unlike CFT, which applies uniform
fusion across multiple levels, our approach refines feature
extraction at P4/16 by incorporating multi-scale attention
mechanisms, strengthening the fusion of RGB and IR data.
This modification leads to more precise object detection,
particularly for small and low-contrast targets, which are often
missed in conventional fusion methods.

The key contributions of this work are as follows:

o Improved Fusion at P4/16: We introduce MAFT to refine
feature extraction and fusion at the mid-level feature
stage.

State-of-the-Art Performance on Multispectral Datasets:
Our model is evaluated on the VEDAI [5], FLIR-Aligned
[6], [7], and KAIST [8] datasets, showing improved
accuracy over existing approaches, especially for
detecting small objects.

Efficient Computation for Real-Time Applications: The
method maintains high detection accuracy while keeping
inference time low, making it suitable for military,
automotive, and surveillance applications.

II. RELATED WORK

Multispectral object detection has undergone significant
advancements with the development of deep learning.
Traditional approaches relied on handcrafted fusion techniques
such as Simple Averaging and Weighted Summation [1],
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Fig. 1.

The architecture of the proposed method. RGB and infrared features are independently extracted through convolutional layers and fused at P3/8,

P4/16, and P5/32 using Multi-Scale Attention and Cross-Modality Fusion Transformers.

which often failed to exploit the complementary nature of
RGB and IR data fully. More recent methods integrate
deep learning-based fusion strategies, which can be broadly
categorized into CNN-based fusion and transformer-based
fusion.

A. CNN-Based Fusion Approaches

Early deep learning models primarily relied on
convolutional neural networks (CNNs) to extract and
merge modality-specific features. DenseFuse [2] introduced
an encoder-decoder architecture that combined RGB
and IR data through element-wise addition or LIl-norm
fusion. Another approach, Halfway Fusion [3], proposed
an intermediate-stage feature fusion mechanism within a
CNN-based object detection model, allowing the network
to retain modality-specific information before merging them
into a unified representation. While these methods improved
multispectral fusion, CNN-based architectures struggle with
long-range dependencies and fail to capture the global
interactions between RGB and IR features fully.

B. Transformer-Based Fusion Approaches

With the success of transformers in vision tasks, recent
multispectral detection models incorporate self-attention
mechanisms to capture global dependencies. The Multi-Modal
Feature Pyramid Transformer [9] improves RGB-IR fusion
by applying cross-modal attention at multiple feature scales.
CAFF-DINO [10] strengthens multispectral object detection
by introducing cross-attention modules, which facilitate
better modality interaction in challenging conditions. The
Cross-Modality Fusion Transformer (CFT) [4] has emerged as
a state-of-the-art approach, combining RGB and IR features
at P3/8, P4/16, and P5/32 using transformer-based fusion.

Despite these advancements, existing transformer-based
fusion methods typically apply uniform self-attention
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mechanisms without explicitly adapting to variations in object
size and modality characteristics.

III. METHODOLOGY

This work addresses the limitations of existing fusion
methods by introducing the Multi-Scale Attention Fusion
Transformer, which enhances feature extraction and integration
through the use of both spatial and channel attention
mechanisms embedded within the transformer block. MAFT
specifically enhances feature fusion at the P4/16 Ilevel,
enabling more accurate detection of small and low-contrast
objects while maintaining computational efficiency.

A. Overall Architecture

The proposed model follows a two-stream feature
extraction pipeline, where RGB and IR images are processed
independently through a YOLOvS5 [10] backbone before
fusion. This backbone extracts hierarchical features at different
scales, ensuring each modality retains its unique characteristics
while enabling effective integration. Features are extracted and
fused at three key stages of the feature hierarchy:

P3/8: Captures fine-grained spatial details helpful in
detecting large objects.

P4/16: A mid-level stage where features contain local
structure and contextual information.

P5/32: Captures high-level semantic information needed
for robust object classification.

At each stage, transformer-based fusion mechanisms
integrate the extracted features from both modalities. Figure
1 illustrates the two-stream architecture, highlighting the
distinction between CFT and MAFT, where the latter refines
feature extraction through multi-scale attention.

Unlike prior methods that apply uniform self-attention
across all feature extraction stages, MAFT introduces a
multi-scale attention mechanism at the P4/16 stage. Applying
this mechanism at every stage would significantly increase
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Fig. 2. The architecture of the proposed transformer. The key components
include separate multi-scale attention modules applied to the RGB and
IR input features, as well as standard transformer blocks that process the
fused representation. The multi-scale attention enables the model to capture
relevant features at different spatial resolutions, thereby improving its ability
to combine information from the two modalities effectively.

computational complexity, making real-time applications
impractical. Instead, P4/16 serves as an optimal point for
enhancement, as it captures both low-level spatial details from
P3/8 and high-level semantic features from P5/32. This stage
effectively acts as a bridge, ensuring a smooth transition across
feature scales, which is crucial for detecting objects of varying
sizes and enhancing modality integration.

B. Multi-Scale Attention Mechanism

To improve feature representation before fusion, we
introduce a dual attention mechanism that combines spatial
and channel attention.

1) Channel Attention: Given an input feature map F &
REXHXW = \we compute channel-wise importance using a
squeeze-and-excitation structure. The global descriptor is
obtained via global average pooling:

z = GAP(F) € R” (1)

This descriptor passes through two fully connected layers with
a nonlinearity to yield channel attention weights:

Z, = O'(W2 . 6(W1 Z)) (2)
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where Wy, W5 are learnable weights, §(-) denotes ReLU, and
o(+) denotes the sigmoid activation. These weights are applied
to the original feature map to modulate channel importance.

2) Spatial Attention: Spatial attention identifies salient
regions within a feature map using average and max pooling,
followed by convolution:

zs = o (f7*7 (AvgPool(F) || MaxPool(F))) (3)
where || denotes channel-wise concatenation and f7*7(-) is a
convolution with a 7 X 7 kernel.

The refined feature map after applying both attentions
becomes:

F =F z. -z, 4)
This dual attention mechanism ensures that the model

focuses on the most informative channels and regions in both
RGB and IR streams.

C. Transformer Fusion at P4/16

The core innovation in MAFT lies in its transformer-based
fusion block, applied selectively at the P4/16 feature level.
This stage balances low-level spatial details and high-level
semantics, making it a prime candidate for enhanced fusion.

After applying the multi-scale attention mechanism to the
modality-specific feature maps Frgg and Fg, we flatten and
concatenate them to form a joint sequence representation:

I = Concat(Flatten(Fggg), Flatten(Fg )) € RZEW*C  (5)

A learnable positional embedding is added to I to retain
spatial context, and the sequence is passed through a
transformer block comprising multi-head self-attention and a
feed-forward network. The attention mechanism models both
intra- and inter-modality dependencies.

Instead of using handcrafted fusion rules, we adopt
self-attention to compute interactions:

T

QK

Attention(Q, K, V) = softmax
(QEV) Vi

v

(6)

where Q, K, and V are learned projections of I, and dj, is a
scaling factor.

The output of the transformer block is reshaped and
merged back with the original feature streams using residual
cross-modality fusion. This helps retain modality-specific
information while reinforcing shared representations:

Fiused = Frop + CrossAttrgp—ir + CrossAttir rgs  (7)
By limiting this enhanced fusion to P4/16, MAFT achieves

improved accuracy with minimal impact on inference speed,
striking a practical balance for real-time applications.



IV. EVALUATION

To assess the effectiveness of the proposed method, we
evaluate its performance using mean Average Precision (mAP)
at different Intersection over Union (IoU) thresholds. The
primary evaluation metrics include mAP@50, mAP@75, and
mAP@50:95, which measure detection accuracy at varying
levels of localization precision.

The Average Precision (AP) for a given class is defined as:

1
AP :/ P(r)dr (8)
0
where P(r) is the precision-recall curve. The mean Average
Precision (mAP) across all classes is then given by:

1 n
mAP = — ; AP; )

Where N is the total number of classes.

For a more comprehensive evaluation, we compute
mAP@50, which considers predictions correct if the IoU is
at least 0.50, and mAP@75, which applies a stricter threshold
by requiring an IoU of at least 0.75. Additionally, mAP@50:95
averages AP across IoU thresholds ranging from 0.50 to 0.95
in increments of 0.05, providing a more detailed performance
measure.

A. Experimental Setup

The experiments are conducted on the VEDAI [4],
FLIR-Aligned [5], and KAIST [6] datasets, each offering
different challenges in multispectral object detection. VEDAI
consists of aerial images containing small vehicles captured
in both RGB and infrared. FLIR-Aligned provides thermal
and visible imagery for detecting pedestrians and vehicles
in real-world driving scenarios. KAIST is a multispectral
pedestrian detection dataset that includes both day and night
scenes, making it particularly useful for evaluating robustness
in low-light conditions. All datasets are preprocessed to ensure
alignment between RGB and IR modalities, maintaining
consistent image resolution and aspect ratios. Standard
data augmentation techniques, including random cropping,
horizontal flipping, and brightness adjustments, are applied to
enhance generalization.

The model is trained using stochastic gradient descent
(SGD) with a learning rate of 1 x 10~2. The batch size is
set to 16, and training is conducted for 600 epochs on an
NVIDIA GeForce RTX 4090 Ti GPU. The number of epochs
was determined empirically, ensuring that training converges
optimally without overshooting.

B. Experimental Results

Table I presents the quantitative results comparing
MAFT with baseline models, including CFT and standard
YOLO-based approaches. The results demonstrate that MAFT
consistently outperforms previous methods across all datasets,
achieving the highest mAP@50, mAP@75, and mAP@50:95
in most cases.
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TABLE I
COMPARISON OF MAP RESULTS ON VEDAI, FLIR-ALIGNED, AND
KAIST DATASETS. BEST RESULTS ARE MARKED IN BOLD, SECOND-BEST
RESULTS ARE UNDERLINED.

Dataset  Method mAP@50 mAP@75 mAP
YOLOVS (RGB) 0.535 0.287 0.299
VEDAI YOLOVS5 (Thermal) 0.444 0.225 0.243
CFT (RGB+T) 0.610 0.313 0.331
MAFT (RGB+T) 0.719 0.484 0.437
YOLOVS5 (RGB) 0.927 0.706 0.642
FLIR YOLOVS5 (Thermal) 0.954 0.728 0.695
CFT (RGB+T) 0.949 0.755 0.679
MAFT (RGB+T) 0.950 0.762 0.679
YOLOVS5 (RGB) 0.973 0.931 0.776
KAIST YOLOVS5 (Thermal) 0.954 0.906 0.695
CFT (RGB+T) 0.974 0.934 0.814
MAFT (RGB+T) 0.975 0.935 0.815

On the VEDAI dataset, which contains small objects
in aerial images, MAFT achieves a mAP@50 of 0.719,
significantly  outperforming CFT (0.610) and both
single-modality YOLO baselines. The improvement is even
more pronounced in mAP@75, where MAFT achieves 0.484,
compared to 0.313 for CFT. This highlights the effectiveness
of multi-scale attention at P4/16, which enhances small
object detection by improving feature extraction and modality
fusion.

For the FLIR-Aligned dataset, MAFT achieves the
best mAP@75 (0.762), surpassing both CFT (0.755) and
the single-modality thermal YOLO baseline. However,
mAP@50, the thermal-only YOLO model, reaches 0.954,
slightly outperforming MAFT (0.950). This suggests
that single-modality models may retain an advantage in
high-contrast thermal imagery in certain conditions. However,
MAFT still provides a more balanced fusion strategy across
multiple IoU thresholds.

On the KAIST dataset, which includes pedestrian detection
in both day and night conditions, MAFT achieves the highest
mAP scores across all metrics, with a mAP@50 of 0.975
and a mAP@75 of 0.935, slightly improving over CFT
(0.974 and 0.934, respectively). The relatively small difference
suggests that both models perform strongly on this dataset, but
the additional refinement from multi-scale attention at P4/16
provides a slight edge.

In addition to accuracy improvements, MAFT maintains
competitive computational efficiency, as shown in Table
??. The inference speed results indicate that CFT remains
slightly faster across all datasets, with MAFT introducing
a small computational overhead due to the added attention
mechanisms. For instance, in VEDAI, MAFT’s inference time
is 11.0 ms, compared to 9.2 ms for CFT, resulting in a drop
in FPS from 108.7 to 90.9. A similar pattern is observed in
FLIR and KAIST, where MAFT trades off a modest decrease
in speed for improved detection accuracy.

Despite this, the model remains within an acceptable range
for real-time applications, demonstrating that the selective use



of multi-scale attention at P4/16 effectively enhances accuracy
without significantly compromising computational efficiency.

TABLE 11
INFERENCE SPEED COMPARISON ACROSS DIFFERENT METHODS

Dataset  Method Time (ms) FPS
CFT (RGB+T) 9.2 108.7
VEDAL  \IAFT (RGB+T) 11.0 90.9
rLg | CFT (RGB+T) 5.1 196.1
MAFT (RGB+T) 5.8 172.4
CFT (RGB+T) 43 2326
KAIST  \[AFT (RGB+T) 53 188.7

V. CONCLUSION

In conclusion, this paper has tackled the critical challenge
of effectively integrating RGB and IR images for robust
object detection. To this end, we introduced the MAFT, a
transformer architecture specifically designed to strenghen
feature extraction and fusion at the crucial mid-level feature
stage, P4/16. Unlike prior transformer-based methods that
apply uniform fusion across all feature scales, MAFT
incorporates multi-scale attention mechanisms at P4/16 to
refine both spatial and channel interactions between RGB
and IR features before fusion. The experimental evaluation
of MAFT on the VEDAI, FLIR-Aligned, and KAIST
datasets has demonstrated state-of-the-art performance across
key evaluation metrics, including mAP@50, mAP@75,
and mAP@50:95. Notably, MAFT showed significant
improvements in detecting small and low-contrast objects,
as evidenced by the substantial gains on the VEDAI
dataset. While achieving these accuracy improvements, MAFT
maintains competitive computational efficiency, demonstrating
its potential for real-time applications in domains such as
autonomous driving, surveillance, and aerial reconnaissance.
Future work could explore extending the multi-scale attention
mechanism or investigating its application to other fusion
stages to enhance performance and efficiency further.
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