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Abstract—This paper proposes a multi-agent radio simultane-
ous localization and mapping (SLAM) employing a point cloud-
based approach to enhance the accuracy, speed, and stability of
the mapping. Traditional radio SLAM relies on measurements
from a single sensing source, resulting in low reliability and lim-
ited sensing coverage. To overcome these challenge, the proposed
algorithm fuses local maps of individual user equipments (UEs)
through a point cloud-based approach. In a scenario with two
moving UEs, the simulation results demonstrate that the angular
error converges to a smaller value at a faster rate, and the
Chamfer distance reaches zero nearly twice as fast compared
to the single-agent cases.

Index Terms—Radio simultaneous localization and mapping,
multi-agent, point cloud

I. INTRODUCTION

Radio Simultaneous localization and mapping (SLAM) es-

timates the current position of user equipment (UE) while

constructing a map of the surrounding environment employing

radio signals [1], [2]. Radio SLAM operating with a single

UE relies on measurements from only one sensing source,

resulting in low reliability and limited coverage [3], [4]. To

overcome these limitations, this paper proposes a multi-agent

radio SLAM employing a point cloud-based approach, where

multiple UEs fuse their locally estimated maps to improve both

accuracy and speed. The point cloud-based approach accumu-

lates reflection points (RPs) and processes them collectively

to achieve stable mapping, providing realistic and visually

interpretable locations.

II. SYSTEM MODEL

This paper considers a scenario with a single base station

(BS) and N UEs for localization and mapping, as illustrated

in Fig. 1. The fixed position of the BS is denoted by pBS =
[xBS, yBS]

� and each UE is assumed to be mounted on a

vehicle. The state of the n-th vehicle at time t is defined

as sn,t = [p�
UE,n,t, αn,t, ρn,t, ζn,t, ξn,t]

�, where pUE,n,t =
[xUE,n,t, yUE,n,t]

� is the 2D position of the n-th UE, αn,t is

the heading, ρn,t is the translation speed, ζn,t is the turn-rate,

and ξn,t is the clock bias. The dynamic model of the n-th

vehicle is given by

sn,t = v(sn,t−1) + en,t, (1)
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Fig. 1. An Example of multi-agent radio SLAM.

where v(·) is a known transition function [5] and en,t denotes

the process noise with known covariance E.

Each UE receives a line-of-sight (LOS) signal and non-

line-of-sight (NLOS) signals reflected from K walls. The

corresponding measurements are modeled as

[d̂k,n,t, θ̂k,n,t]
� = [dk,n,t, θk,n,t]

� + r (2)

where r ∼ N (0,R) denotes the measurement noise with

known covariance R. dk,n,t and θk,n,t are the true propagation

distance and true angle-of-arrival (AOA), respectively. The

parameters of the LOS and the k-th NLOS paths are given

by

dk,n,t (3)

=

{

‖pBS − pUE,n,t‖, k = 0

‖pBS − pRP,k,n,t‖+ ‖pRP,k,n,t − pUE,n,t‖, otherwise

θk,n,t =

{

arctan
pBS−pUE,n,t

‖pBS−pUE,n,t‖
, k = 0

arctan
pRP,k,n,t−pUE,n,t

‖pRP,k,n,t−pUE,n,t‖
, otherwise

(4)

where pRP,k,n,t = [xRP,k,n,t, yRP,k,n,t]
� is the position of RP.

III. MULTI-AGENT RADIO SLAM

A. Localization

For UE positioning, the Jacobian matrix, derived from the

measurements obtained through the case with the smallest d̂
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Fig. 2. Comparison of the average angular difference between the proposed
multi-agent and single-agent SLAM.

value, is given by

J =

[

cos(θ̂0,n,t) −d̂0,n,t · sin(θ̂0,n,t)

sin(θ̂0,n,t) d̂0,n,t · cos(θ̂0,n,t)

]

, (5)

and is used to compute the measurement coordinate covariance

O = JRJ′. The final estimated position of the UE is obtained

as

p̂UE,n,t = M(G−1 · pUE,n,t +O−1 · pm), (6)

where M denotes the fused covariance, G is the covariance

of pUE,n,t, and pm is the position of the UE estimated from

LOS path.

B. Mapping

Mapping is performed in all cases except for the one with

the smallest d̂ value. Each path is assumed to involve a single

bounce, where the signal propagates from the BS to a RP

and then to the UE. The estimated position of the RP can be

determined by
{

‖p̂RP,k,n,t − pBS‖+ ‖p̂RP,k,n,t − p̂UE,n,t‖ = d̂,

(p̂RP,k,n,t − p̂UE,n,t)
�uk,n,t = ‖p̂RP,k,n,t − p̂UE,n.t‖,

(7)

where uk,n,t = [cos(θ̂k,n,t), sin(θ̂k,n,t)]
� is the unit direction

vector. The RP lies on an ellipse with the BS and the UE as

its foci, and also on a straight line originating from the UE

in the direction of the uk,n,t. The RP’s position is determined

by the intersection of the line and the ellipse.

C. Post-processing

K-means clustering is applied to partition the set of all

mapped RPs into K non-overlapping clusters, each asso-

ciated with a wall. The objective of clustering is given

by argmink(
∑

(k,n,t) ‖p̂RP,k,n,t − µ̂k‖
2), where µ̂k denotes

centroid of the set of points in the k-th cluster. Principal

component analysis (PCA) is then used for each cluster to

determine the line that best fits its points. Each wall is

estimated as the line passing through µ̂k in the direction of

the principal component vector υ̂k as follows:

ŵk = γ̂kυ̂k + µ̂k, (8)
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Fig. 3. Comparison of the average Chamfer distance between the proposed
multi-agent and single-agent SLAM.

where the scalar γ̂k is determined from the boundary points.

IV. SIMULATION RESULTS

An 120m× 60m indoor environment is considered with a

fixed BS and two vehicles moving along different trajectories

around it. The BS is located at [0m, 0m]� and the each vehi-

cle is initially set to s1,t =[15.9m, 0m, π/2 rad, 5m/s, π/10

rad/s]�, s2,t =[7.9m, 0m, π/2 rad, 2.5m/s, π/10 rad/s]�.

The noise covariance matrix of the process E, the measure-

ment covariance matrix R, and the position covariance matrix

G are set to diag(0.04m2, 0.04m2, 10−6rad2, 0, 0, 0.04m2),
diag(9m2, 10−2rad2), diag(1m2, 10−4rad2), respectively.

The total time is set to T = 40, and the simulation is repeated

100 times to ensure statistical reliability.

To compare the similarity of the estimated wall and the

ground truth (GT) wall, mapping performance is evaluated

using the angular difference and the one-way Chamfer dis-

tance. The angular difference between the direction vector

of the two walls is defined as 180
π

arccos(υk · υ̂k), where

υk denotes the direction vector of the k-th wall. For the

Chamfer distance computation, the estimated wall and the

corresponding GT segment obtained by projection are each

sampled in 200 points, forming the points sets Lest and QGT,

respectively. The one-way Chamfer distance is defined as
∑

l∈Lest
minq∈QGT

‖l − q‖.

The mapping performance evaluation results are shown in

Fig. 2 and Fig. 3. In Fig. 2, the proposed algorithm converges

to a smaller value at a faster rate compared to the single-agent

cases, indicating that it estimates a wall parallel to the GT. In

Fig. 3, while the single-agent cases require more than 10s
to reach zero, the proposed algorithm achieves convergence

at approximately twice the speed, accurately estimating the

wall at the same position as the GT. Consequently, based

on both evaluation metrics, the multi-agent SLAM algorithm

demonstrates faster, more accurate, and stable mapping results.

V. CONCLUSION

This paper proposes a multi-agent radio SLAM that employs

a point cloud-based approach. By integrating local maps
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from multiple UEs, the proposed algorithm achieves rapid

mapping through accumulation of RPs, furthermore, refines

the results with K-means and PCA for stable and accurate

wall estimation. Compared to single-agent cases evaluated

with angular difference and one-way Chamfer distance, the

proposed algorithm converges to nearly zero error values

significantly faster. The simulation results demonstrate the

speed, accuracy, and stability of the proposed algorithm in

mapping the surrounding environment.
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