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Abstract—Indoor localization for Unmanned Aerial Vehicles
(UAV) is a fundamental prerequisite for autonomous operations
in environments where GPS is unavailable. Although Ultra-
Wideband (UWB) with Time Difference of Arrival (TDoA)
provides a reasonable localization service to those UAVs, its
accuracy is often limited by conventional filtering algorithms
like the Kalman Filter (KF). The performance of these filtering
algorithms is fundamentally limited by their dependency on
simplified, predefined motion models, which are inadequate for
tracking the agile and nonlinear movements of a UAV. To
overcome this limitation, this paper introduces a deep learning
framework centered on a Long Short-Term Memory (LSTM)
network as a direct replacement for the Kalman Filter. The
model is trained on a large-scale synthetic dataset, which includes
sequences of TDoA and Received Signal Strength Indicator
(RSSI) values from a UAV performing diverse flight patterns.
By learning directly from the raw sensor stream, our model
maps the complex temporal dependency to the UAV’s positional
coordinates without reliance on an explicit physical model. The
empirical results from our simulations confirm that our data-
driven approach yields a substantial improvement in localization
accuracy and robustness over the traditional KF approach,
presenting a viable and superior alternative for challenging
indoor navigation tasks.

Index Terms—TDoA, RSSI, Ultra-Wideband, Kalman filter,
deep learning, LSTM, indoor localization

I. INTRODUCTION

In recent years, the utilization of Unmanned Aerial Vehicles
(UAV), commonly known as drones, has expanded rapidly in
environments where human access is difficult or hazardous,
such as disaster site exploration, large-scale warehouse au-
tomation, and precision inspection of indoor facilities [1].
The successful autonomous execution of these critical mis-
sions presupposes a precise and robust positioning capability.
However, in environments such as indoors or urban canyons
where Global Positioning System (GPS) signals are obstructed,
satellite-based navigation becomes infeasible. This limitation
makes Indoor Positioning Systems (IPS) as an essential alter-
native [2].

Among various indoor positioning technologies, Ultra-
Wideband (UWB) has emerged as one of the most promis-
ing solutions, offering superior ranging accuracy based on
its nanosecond-level temporal resolution and demonstrating
strong resilience to multipath fading, a persistent challenge in
indoor settings [3]. The Time Difference of Arrival (TDoA)
technique, which utilizes the time difference of signals arriving
at multiple fixed anchors from a mobile tag, is frequently
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employed in UWB systems as it obviates the need for strict
time synchronization at the tag [4]. However, UWB signals
are inevitably corrupted by noise stemming from factors like
Non-Line-of-Sight (NLOS) conditions, where the signal path
is obstructed by obstacles, and multipath interference.

To mitigate such noise and produce a stable trajectory
estimate, model-based filtering techniques like the Kalman
Filter (KF) and its variants, such as the Extended Kalman Filter
(EKF), have been widely adopted [5]. Nevertheless, these
approaches possess a fundamental limitation. The Kalman
Filter assumes a linear motion model, such as Constant Veloc-
ity (CV) or Constant Acceleration (CA), which is inherently
inconsistent with the agile and highly nonlinear dynamics of
a UAV that frequently undergoes abrupt changes in accelera-
tion and orientation. This discrepancy between the prediction
model and the actual movement can severely degrade local-
ization accuracy [6].

To overcome the limitations of these model-based filters,
this paper proposes a data-driven, deep learning approach
that learns motion patterns directly from raw sensor data.
Specifically, we design an end-to-end positioning model using
a Long Short-Term Memory (LSTM) network to completely
replace the conventional Kalman Filter. The LSTM is a
type of Recurrent Neural Network (RNN) renowned for its
effectiveness in capturing complex temporal dependencies in
time-series data [7]. The key contributions of this work are as
follows:

« First, we propose an end-to-end LSTM-based localization
framework that directly maps a sequence of raw UWB
TDoA and RSSI data to the UAV’s 3D position, without
relying on a predefined physical model.

o Second, we developed a high-fidelity simulation envi-
ronment to generate a large-scale dataset for training
and evaluation, encompassing a wide variety of flight
scenarios.

« Third, through extensive experiments on complex flight
paths, we quantitatively demonstrate that the proposed
model achieves an average of 18% improvement in
positioning accuracy over the traditional Kalman Filter
baseline.

In this paper, we initially assume a Line-of-Sight (LoS)
environment to clearly validate the core performance of the
proposed model. The remainder of this paper is organized as
follows. Section II reviews related work. Section III details
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the proposed system architecture and LSTM model. Section IV
describes the experimental setup along with dataset generation
process. Section V presents performance evaluation through
the comparative analysis of the experimental results. Finally,
Section VI concludes this paper along with future work.

II. RELATED WORK

UWB technology is widely recognized for its potential in
high-precision indoor localization due to its excellent time-
domain resolution and resilience to multipath fading. In UWB
systems employing the TDoA technique, raw measurements
are often corrupted by noise. To mitigate this and produce a
smooth trajectory estimate for dynamic objects, filtering algo-
rithms are traditionally employed, with the Kalman Filter (KF)
and its variants being the most prominent choices. However,
the performance of the Kalman Filter is fundamentally limited
by its reliance on a predefined mathematical motion model,
such as a CV or CA model. Such assumptions struggle to
accurately capture the complex, nonlinear dynamics of an agile
UAV. Furthermore, when UWB signals are temporarily lost,
KF-based approaches that also utilize an Inertial Measurement
Unit (IMU) suffer from rapid error accumulation, leading
to a significant degradation in localization accuracy. This
dependency on simplified models and vulnerability to signal
outages necessitates a more robust, data-driven approach.

To address the limitations of model-based filters, researchers
have increasingly turned to deep learning methods. Early
applications focused on using neural networks to improve the
quality of UWB measurements. For instance, [8] proposed
DeepTAL, a LSTM based network designed to handle TDoA
measurement errors and missing data in asynchronous local-
ization systems. Their model learns the temporal patterns in
TDoA sequences to predict and correct faulty or incomplete
data points. Similarly, [9] developed a hybrid algorithm where
an LSTM network predicts future TDoA values to correct
real-time measurements affected by issues like clock drift.
The corrected TDoA values are then fed into a separate
Weighted K-Nearest Neighbors (WKNN) model to compute
the final position. These studies demonstrate the effectiveness
of LSTMs in enhancing the integrity of raw TDoA data,
though they do not use the neural network for end-to-end
position estimation itself.

More recent works have taken a step further by using RNNs
to replace the Kalman Filter’s role entirely. A highly relevant
study by [10] proposed an RNN-based localizer that takes
past UWB TDoA and IMU sensor data as input to predict
future localization coordinates. Their key contribution is a
mechanism to handle UWB signal outages: when the signal
is lost, the model uses its own predicted location to generate
augmented TDoA values, which are then fed back into the
network. This allows the system to maintain stable tracking
where a KF-based approach would fail, achieving a 31% lower
localization error compared to the KF baseline. This trend
is also visible in adjacent fields. For instance, [11] applied
Convolutional Neural Networks (CNN) to estimate the ToA
from raw acoustic emission signals in noisy environments,
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Fig. 1. Architecture of the Proposed LSTM-based UWB Localization System.

demonstrating a 10x gain in accuracy compared to traditional
statistical methods. In the specific context of UAV navigation,
deep learning has also been pivotal in enabling the fusion
of multiple sensor modalities. [12] developed VIUNet, a
framework that fuses Vision, IMU, and UWB data for indoor
UAV localization, arguing that deep learning can learn and
compensate for sensor biases more effectively than conven-
tional methods.

Our work is positioned within this research landscape.
While building on the demonstrated success of LSTMs for
processing UWB time-series data, our approach distinguishes
itself by focusing on a streamlined yet robust solution. Unlike
multi-modal fusion systems such as VIUNet, we exclusively
use UWB-derived data (TDoA and RSSI). In contrast to meth-
ods that use LSTMs only for data correction, we employ an
end-to-end LSTM model to directly map the sequence of raw
sensor readings to a 3D position, thereby replacing the Kalman
Filter’s function entirely. By directly comparing our model
with a traditional KF baseline, we aim to demonstrate that a
well-trained deep learning model can outperform conventional
filters for complex 3D UAV trajectory tracking without the
need for additional sensor types like IMU or cameras.

III. PROPOSED METHOD
A. System Architecture

The proposed system is an indoor positioning system de-
signed to track the 3D trajectory of a UAV. The fundamen-
tal hardware configuration, as illustrated in Fig. 1, consists
of two main components: multiple UWB anchors fixed at
known positions within the environment and a single UWB
tag mounted on the mobile UAV. This setup is specifically
designed to utilize the TDoA measurement technique, which
offers the practical advantage of not requiring precise time
synchronization on the mobile tag [4].

The data processing pipeline begins when the UWB tag
on the UAV periodically transmits signals. These signals are
received by each of the stationary UWB anchors. For each
transmission event, the system calculates the TDoA values,
representing the difference in signal arrival times between a
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Fig. 2. Data Processing Pipeline

designated reference anchor and the other anchors. Simulta-
neously, the RSSI value is measured at each anchor.

This process yields a stream of raw sensor measurements
containing both temporal (TDoA) and signal strength (RSSI)
information. Instead of being filtered by a conventional model-
based filter, this raw time-series data is directly fed into our
proposed deep learning model. The model’s objective is to
learn the complex underlying patterns of the UAV’s motion
from this sequence of sensor data and output a robust estimate
of the UAV’s 3D position coordinates (z,y,2) at each time
step.

B. Input Data Formulation

Our proposed model leverages the temporal context inherent
in the UAV’s movement by processing data in sequences rather
than as individual, isolated data points. The core of our data-
driven approach is the formulation of input data that preserves
this time-series information.

First, at each discrete time step ¢, a feature vector x; is
constructed by concatenating the TDoA and RSSI values from
all N = 4 anchors:

Xt = [TDOALt, TDOAZt, TDOAS,tv TDOA4Tt, (1)
RSSIy 4, RSSI> 4, RSSI5, RSy )",
where x; € R8.

To prepare the data for the LSTM model, we employ a
sliding window technique as part of our data preprocessing
pipeline. A fixed-length sequence of L consecutive feature
vectors is extracted to form a single input sample, X;:

2

Xi = [Xi, Xig1, - XitL—1]-
Here, X; € RY*8 is a matrix representing the sensor readings
over a time window of length L, which is a key hyperparam-
eter of our system. The corresponding ground truth label for

and LSTM Model Architecture.

this input sequence, y;, is the UAV’s actual 3D position at the
subsequent time step, ¢ + L:

3)

This structure tasks the model with predicting the future
position based on the recent history of sensor measurements.

Prior to sequence creation, a crucial preprocessing step is
applied. Both the input features (e.g., TDoA and RSSI) and
the output targets (e.g., position coordinates) are independently
normalized to a range of [0, 1] using Min-Max scaling. This
normalization is essential for the stable and efficient training of
the neural network. The process ensures that no single feature
dominates the learning process due to its scale. To maintain
the integrity of our time-series data, sequence generation
is performed strictly within the boundaries of each unique
simulation run (identified by ‘RunID’). This prevents the
model from learning spurious patterns across disconnected
flight trajectories.

T
Yi= [pz,H—vay,H—Lapz,H—L]

C. LSTM-based Positioning Model

To overcome the limitations of predefined motion models
inherent in traditional filtering methods, we propose a deep
learning model based on a LSTM network. LSTM is a
special type of RNN specifically designed to learn long-range
temporal dependencies, making it highly effective for time-
series data analysis [7]. Our model directly learns the complex
spatiotemporal correlations from the sequence of UWB sensor
data to estimate the UAV’s trajectory.

The architecture of our proposed model, as depicted in
Fig. 2, is implemented using the PyTorch framework and
consists of the following layers:

o Input Layer: The model takes the sequence matrix
X ¢ RI*® as input, where L is the sequence length
(a hyperparameter set to 8 in our experiments) and 8
represents the number of input features (e.g., 4 TDoA
values and 4 RSSI values).
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o Stacked LSTM Layers: To capture the complex dy-
namics of the UAV’s motion, we employ a stack of
two LSTM layers with a hidden size of 128 neurons.
Stacking LSTM layers allows the model to learn hier-
archical temporal features, with the first layer learning
basic temporal patterns and the second layer learning
more abstract patterns from the output of the first. A
dropout rate of 0.2 is applied between the LSTM layers
to prevent overfitting by randomly deactivating a fraction
of neurons during training, which enhances the model’s
generalization capability.

o Fully Connected Layer: The output of the second LSTM
layer is a sequence of hidden states for each time step.
We are interested in making a single position prediction
after observing the entire sequence. Therefore, only the
hidden state from the very last time step of the sequence
(hr) is passed to a fully connected (or dense) layer. This
layer acts as a regressor, mapping the learned high-level
feature representation from the LSTM’s final hidden state
to the desired 3D output space.

o Output Layer: The final layer outputs a vector § € R3,
which represents the model’s estimate of the UAV’s 3D
position coordinates (P, Py, D).

For the model’s training, we use the Mean Squared Error
(MSE) as the loss function, which measures the average
squared difference between the estimated positions and the
ground truth positions. The model’s weights are optimized
using the Adam optimizer, an efficient stochastic gradient
descent algorithm, with a learning rate of 0.0008.

IV. EXPERIMENTAL SETUP

To rigorously evaluate the performance of our proposed
LSTM-based model against the traditional Kalman Filter ap-
proach, we designed a comprehensive simulation-based exper-
iment. This section details the methodology for generating a
large-scale dataset, the baseline model used for comparison,
and the metrics for performance evaluation.

A. Dataset Generation

A key requirement for training a robust deep learning model
is a large and diverse dataset that accurately reflects the com-
plexities of the target environment. To this end, we developed
a sophisticated simulation environment using MATLAB and
its UAV Toolbox to generate synthetic UWB sensor data from
a wide variety of UAV flight paths [13].

The simulation environment was configured with four sta-
tionary UWB anchors placed at known coordinates within a
3D space. The core of our data generation process involved
executing 1,000 unique simulation runs. For each run, a
new, complex flight trajectory for the UAV was procedurally
generated. This was achieved by first defining a set of random
waypoints within the simulation boundaries. Subsequently, a
greedy algorithm was employed to reorder these waypoints,
creating a more realistic and dynamically complex flight path
than a simple traversal of random points would allow. The

UAV was programmed to navigate this path at an average
speed, ensuring varied velocity and acceleration profiles.

During each simulation, as the UAV traversed its trajectory,
we logged data at every valid UWB signal transmission event.
Our custom UWB sensor model simulates transceivers com-
pliant with the IEEE 802.15.4z standard, operating at a center
frequency of 6.5 GHz in High Pulse Repetition Frequency
(HPRF) mode [14]. This model was used to simulate signal
propagation, calculating the TDoA and RSSI values at each
anchor with the inclusion of realistic noise factors such as
random fading effects. For each valid data point, we recorded
the following information:

o RunID: A unique identifier for each of the 1,000 simu-
lation runs.

o Timestamp: The simulation time at which the measure-
ment was taken.

o Ground Truth Position (x, y, z): The true 3D coordinates
of the UAV at the moment of transmission, obtained
directly from the simulation engine.

e TDoA Values: A set of four TDoA measurements, one
for each anchor relative to the reference anchor.

o RSSI Values: A set of four RSSI measurements, indicat-
ing the signal strength received at each anchor.

This process resulted in a comprehensive dataset containing
thousands of data points, encapsulating a wide range of flight
dynamics. The final dataset was exported as a single CSV file,
which served as the basis for training and evaluating both the
proposed LSTM model and the baseline Kalman Filter.

B. Baseline Model: Kalman Filter

To validate the effectiveness of our proposed deep learning
approach, we selected the KF as the baseline model for per-
formance comparison. The Kalman Filter is a traditional and
widely-adopted algorithm for state estimation and trajectory
smoothing in noisy dynamic systems, making it a standard
benchmark in UWB-based localization tasks [5].

Our implementation of the Kalman Filter is designed to pro-
cess the UWB TDoA measurements and produce a smoothed
3D position estimate. The specific configuration of our base-
line model is as follows:

« State Vector: The state of the UAV at each time step & is
represented by a 6-dimensional vector xy, which includes
its 3D position and 3D velocity components:

X = [pac-,pyapzavmavyavz],T 4)

« Motion Model: For the filter’s prediction step, we assume
a linear, CV motion model. This model predicts the
UAV’s next state by assuming it will continue to move at
its current velocity. This reliance on a predefined physical
model is a key characteristic of the KF approach and
a primary point of contrast with our data-driven LSTM
model.

e Measurement Model: The direct measurements from the
UWB system are the TDoA values, which have a non-
linear relationship with the UAV’s position. Therefore, at
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each time step, we first compute a raw position estimate
from the TDoA values using a nonlinear least squares
optimization algorithm. This raw 3D position serves as
the measurement input z; for the Kalman Filter’s update
step.

This Kalman Filter setup represents a robust and conven-
tional method for UWB localization. It serves as a strong
baseline to demonstrate the advantages of our proposed LSTM
model, particularly in its ability to capture the complex,
nonlinear dynamics of UAV flight without being constrained
by a predefined motion model.

V. PERFORMANCE EVALUATION

To conduct a fair and direct comparison between the
proposed LSTM model and the baseline Kalman Filter, we
performed a series of 50 simulations, each with a unique,
randomly generated flight path. For every one of these 50
distinct trajectories, both the baseline model and our proposed
deep learning model were tasked with estimating the UAV’s
position. This one-to-one evaluation on identical paths ensures
that the performance differences can be directly attributed to
the models’ capabilities rather than variations in the flight dy-
namics. During each simulation, the positioning error for both
methods was meticulously recorded for quantitative analysis.

A. Evaluation Metrics

The positioning accuracy of each model is quantitatively
assessed using two standard statistical error metrics: Root
Mean Square Error (RMSE) and Mean Absolute Error (MAE).
These metrics measure the difference between the model’s
estimated position (&;,9;, 2;) and the ground truth position
(zi,vi,z) for a total of N data points.

The primary metric is the Root Mean Square Error
(RMSE), which provides a measure of the error magnitude
and is particularly sensitive to large, infrequent errors due to
the squaring term. It is defined as:

1 N
N D (@i — )2 + (i — 5)2 + (21 — 20)?).

i=1

&)
Additionally, the Mean Absolute Error (MAE) is employed,
which calculates the average of the absolute error magnitudes
(Euclidean distance) across all data points. This metric pro-
vides a more direct interpretation of the average error size and
is defined as:

RMSE =

N
MAE = Jb; V(@i —2:)2 4 (yi — )% + (2 — 2)2. (6)

These two metrics collectively offer a comprehensive view
of each model’s accuracy, allowing for a robust comparison
of their overall performance.
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B. Testing Result

The performance of the proposed LSTM model and the
baseline Kalman Filter was evaluated across all 50 unique
simulation runs. Figs. 3 and 4 provide a detailed, run-by-run
comparison of the MAE and the Squared Error, respectively.
Both figures reveal a consistent visual pattern: the proposed
LSTM model (orange line) demonstrates significantly lower
positioning errors compared to the baseline Kalman Filter
(blue line) across most randomly generated trajectories. This
consistent performance advantage highlights the enhanced
accuracy and robustness of our approach across diverse flight
scenarios.

For a quantitative summary of the overall performance, the
aggregated statistics are presented in Table I. The numerical
data reinforces the visual evidence from the graphs. Our LSTM
model achieved an Average MAE of 0.3324 m, representing a
17.8% improvement over the Kalman Filter’s 0.4042 m. A
similar, more pronounced trend is observed in the RMSE,
where the LSTM model (0.3391 m) outperformed the baseline
(0.4183 m) by 18.9%.

TABLE I
QUANTITATIVE COMPARISON OF POSITIONING ERROR
Metric Kalman Filter (Baseline) LSTM Model
Average MAE [m] 0.4042 0.3324
Minimum MAE [m] 0.2828 0.2752
Maximum MAE [m] 0.5497 0.3865
RMSE [m] 0.4183 0.3391
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Furthermore, the analysis of best and worst-case scenarios
highlights the robustness of our data-driven approach. In the
worst-performing run, the LSTM model’s Maximum MAE
was only 0.3865 m, which is considerably lower than the
Kalman Filter’s worst-case error of 0.5497 m. The LSTM
model also achieved a better best-case performance, with
a Minimum MAE of 0.2752 m compared to the Kalman
Filter’s 0.2828 m. Both the detailed visual evidence and the
aggregate statistical results strongly support the conclusion that
the proposed LSTM model provides not only higher average
accuracy but also more reliable and robust localization service
for complex UAV trajectories than the conventional Kalman
Filter approach.

VI. CONCLUSION

In this paper, we proposed and validated a Long Short-Term
Memory (LSTM)-based deep learning model for the 3D indoor
localization of Unmanned Aerial Vehicles (UAV) using raw
Ultra-Wideband (UWB) Time Difference of Arrival (TDoA)
and Received Signal Strength Indicator (RSSI) data. Through
comprehensive experiments conducted on a large-scale, pro-
cedurally generated simulation dataset, we demonstrated that
our proposed model achieves significantly higher accuracy
and robustness than the traditional Kalman Filter approach.
The results were particularly compelling for complex flight
trajectories, where the data-driven model excelled at tracking
nonlinear dynamics. This paper suggests that deep learning-
based, data-driven methods are effective for overcoming the
inherent limitations of conventional filters that rely on prede-
fined physical motion models.

Building on these promising results, future research will
proceed in several key directions. The immediate next step is
to validate the proposed model in a physical environment using
real UWB hardware and UAVs, which will involve addressing
more challenging real-world conditions, including Non-Line-
of-Sight (NLOS) signal propagation. Furthermore, we will
explore and compare the performance of our current archi-
tecture with the performance of other advanced sequence-to-
sequence models, such as Gated Recurrent Units (GRUs) and
the Transformer, to potentially achieve further improvement in
both localization accuracy and computational efficiency.
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