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Abstract—Human detection and tracking in indoor environ-
ments are essential for applications such as smart homes,
security monitoring, and elder care. Vision-based approaches
provide detailed imagery, but are often constrained by occlusions,
illumination changes, and privacy concerns. mmWave radar
offers a robust alternative; however, the sparsity of its point
clouds poses challenges for accurate skeleton reconstruction. To
overcome this limitation, we present a deep learning framework
that reconstructs 3D human skeletons from mmWave signals.
The proposed system aligns radar point clouds with skeleton
annotations from a vision sensor, allowing the network to learn
a direct mapping from sparse radar inputs to skeletal structures.
Experimental results confirm that our method enables reliable
and privacy-preserving indoor human detection and tracking.

Index Terms—mmWave radar, deep learning, human sensing

I. INTRODUCTION

In indoor scenarios, accurate human detection and tracking
are critical for applications such as smart homes, security, and
elderly care. Conventional methods mainly rely on vision sys-
tems, which provide high-resolution image but are vulnerable
to issues such as lighting fluctuations, occlusion, and privacy
concerns. To overcome these limitations, mmWave radar has
attracted attention as a promising alternative. mmWave radar
is robust to lighting and clothing variations and can even pen-
etrate nonmetallic obstacles, thereby enabling reliable human
sensing. Nevertheless, hardware constraints yield sparse point
clouds that hinder precise reconstruction of shapes and poses.

To mitigate these challenges, recent deep learning methods
have been proposed to enrich semantic representations. For
example, [1] uses motion capture labels to train a network
for reconstructing 3D human meshes from sparse radar data,
while [2] uses vision-based annotations to fine-tune a detector
for robust localization. These works demonstrate that deep
learning can significantly improve the applicability of sparse
point clouds to human-centered perception.

In this paper, we propose a framework that fuses mmWave
radar point clouds with 3D skeleton annotations obtained from
a vision sensor. Radar point clouds serve as the input to a deep
learning model, while vision-based skeletons provide ground
truth during training. This approach enables the reconstruction
of accurate human skeletons from sparse radar returns, leading
to improved detection and tracking performance in indoor
environments. Moreover, since radar data do not contain iden-
tifiable visual information, our approach inherently preserves
privacy while improving sensing capability.

2109

Data Collection Data Processing Model Inference

mmWave Radar

L B

=

= Radar Signal T
= J\J V~=| " Processing 3D Point Cloud
N
=
-
Point Cloud
Generation
= =
X =

3D Skeleton
Generation

Fig. 1. Overview of the proposed system

II. SYSTEM OVERVIEW

In this section, we describe the overall architecture of
the proposed system. The system is designed to reconstruct
skeletal representations in real time, enabling robust human
detection and tracking. As shown in Fig. 1, the framework is
organized into three stages: data collection, data processing,
and model inference.

A. Data Collection

To enable real-time processing, a commercial frequency
modulated continuous wave (FMCW) radar [3] transmits chirp
signals and mixes the received echoes to produce intermediate-
frequency (IF) samples. In parallel, a vision sensor [4] cap-
tures synchronized frames and extracts 3D skeletons using
its SDK. Timestamping both radar and vision data ensures
precise temporal alignment, while rigid co-mounting of the
two devices maintains consistent geometry. Fig. 2 shows the
integrated setup with the subject positioned at a fixed distance
and orientation.

B. Data Processing

IF packets are first decoded and passed through a range
FFT to obtain range bins, followed by a doppler FFT that
produces a 2D range—doppler map. A constant false alarm rate
(CFAR) detector is then applied to identify significant targets,
and an angle of arrival (AoA) FFT on the virtual array resolves
azimuth and elevation. Combining range and angle estimates
yields 3D point locations, which are further augmented with
radial velocity and signal strength before being paired with
the corresponding 3D skeleton frame for dataset construction.
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Fig. 2. Testbed of the integrated radar and vision sensor system

C. Model Inference

As illustrated in Fig. 3, the model employs a query-
based transformer architecture to directly regress 3D human
skeletons from mmWave radar point clouds. The input to the
network is a set of 5D radar points per frame, where each
point comprises X, y, z coordinates, radial velocity, and signal
power. Each frame’s point cloud is first normalized and padded
to a fixed length for uniform processing. These point features
are then tokenized via a linear projection into d-dimensional
embeddings, yielding a sequence of input tokens for the
transformer. A set of learnable object queries then attends to
these tokens through multi-head attention, following a DETR-
inspired design [5]. This mechanism allows each query to
focus on relevant regions of the point cloud and aggregate
cues for a potential human target. The transformer’s output
embeddings corresponding to each query are fed into three
parallel prediction heads: one for the 3D bounding box param-
eters of the detected person, another for the 3D coordinates of
the person’s skeletal keypoints, and a third for an objectness
confidence score. During training, Hungarian matching is
applied to enforce a one-to-one assignment between predicted
queries and ground-truth instances. A composite loss is then
computed only over these matched pairs, combining contri-
butions from bounding box regression, keypoint localization,
and objectness. This end-to-end framework enables the model
to reliably detect and reconstruct human skeletons in 3D from
sparse radar inputs.
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Fig. 3. Model architecture for skeleton reconstruction

III. EXPERIMENTS

Our experiments were conducted using the setup in Fig. 2,
where the mmWave radar and vision sensor were co-mounted
to collect synchronized data streams. The subject performed
various activities such as standing, walking, and sitting, and
the resulting radar point clouds were paired with vision-based
skeletons to form a multimodal training dataset. Fig. 4 presents
representative results: the red skeleton corresponds to the
ground truth from the vision sensor, while the yellow skeleton
shows the reconstructed output of our model, demonstrating
accurate alignment between input radar data and predicted
skeletal structures.

Fig. 4. Visualization of skeleton reconstruction

IV. CONCLUSION

In this paper, we presented a deep learning framework for
indoor human detection and tracking that integrates mmWave
radar with vision-based supervision. The system collects radar
signals, processes them through cascaded FFTs to form point
clouds, and aligns them with 3D skeleton annotations. Using
this multimodal dataset, our model reconstructs accurate hu-
man skeletons from sparse radar returns, achieving reliable
performance while inherently preserving privacy.
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