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Abstract—Recent military UAV surveillance systems strug-
gle in low visibility and challenging operational environments
because they rely on visible light sensors, centralized data
storage, and human-in-the-loop decision making. This paper
introduces PureTrack-IR, a decentralized framework that inte-
grates infrared (IR) imaging, edge optimized object detection,
autonomous artificial intelligence (AI) control, and Pure Chain-
enabled data management system. Thermal cameras first capture
IR images, which are then denoised, aligned, and resized before
being processed by an 8-bit—-quantized YOLOv11lx model on
NVIDIA Jetson hardware. This model accurately detects hostile
military personnel in darkness, smoke, and adverse weather.
The detection outputs are georeferenced and passed to an
Agent Al module that uses reinforcement learning for real time
threat detection, prioritization, and mission adaptation, thereby
reducing operator workload and response time. At the same
time, every image, detection, and AI decision is immutably
recorded on Pure Chain, a lightweight blockchain employing
Smart Auto Mining Plus(SAM+) and a Proof of Authority and
Association (PoA?) consensus mechanism to secure peer-to-peer
transactions in under three seconds. Performance evaluation
confirms robust detection, low latency decision making, and
tamper-proof data integrity. PureTrack-IR enhances situational
awareness, operational security, and tactical effectiveness through
state-of-the-art detection with 99.4% accuracy, providing a robust
and autonomous solution for UAV-based hostile military tracking.

Index Terms—UAVs, Agent Al, Pure Chain, Access Control,
Medical Supply

I. INTRODUCTION

In recent years, the use of UAVs in military surveillance
has grown significantly due to their ability to provide real-
time situational awareness over large areas [1]. UAVs are
typically equipped with a variety of sensors, including visible
cameras and infrared (IR) sensors, which enable them to
track and monitor targets in different operational environments
[2]. Traditional methods for surveillance with UAVs mainly
relied on visible light cameras and basic object recognition
algorithms [3]. These systems were often limited by their
performance in low-light conditions and harsh environmental
factors such as smoke, fog, or night operations [4]. Many
enhanced object detection models have the capability of UAVs
to autonomously detect and track objects with greater accuracy
[5]. Notable frameworks such as YOLO have been employed
for real-time object detection on UAVs, improving tracking
performance in clear conditions [6]. These systems remain
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dependent on visible light imaging, which diminishes their
effectiveness in environments with limited visibility. More
recent developments have integrated thermal and IR imaging to
overcome the limitations of visible light [7]. UAVs equipped
with these sensors provide improved visibility during night
operations and can operate effectively in fog or smoke envi-
ronments [8].

However, although military UAV surveillance technologies
have improved in recent years, several key challenges still limit
their effectiveness in real-world military operations. A pri-
mary issue is the continued reliance on visible-light cameras,
which perform poorly under low-light or obscured conditions.
Additionally, many UAV systems lack sufficient computing
power for real-time information processing, posing a particular
problem for UAVs with limited hardware resources. Current
UAV platforms are constrained by their reliance on rule-
based control systems [9], requiring significant human operator
intervention for critical decisions like threat classification,
target prioritization, and mission adaptation. Such dependency
introduces unacceptable response delays in fast-paced combat
scenarios where rapid autonomous decisions are essential.
Furthermore, existing centralized data storage and processing
structures create vulnerabilities including slower data sharing,
network failures, and potential security breaches. The absence
of secure, automated, tamper-evident validation mechanisms
further risks data manipulation, unauthorized access, and loss
of integrity for surveillance data and mission-critical com-
mands [10].

To address these challenges, this paper proposes the
PureTrack-IR framework, a military UAV surveillance solution
that employs an integrated approach that combines advanced
infrared imaging technology, artificial intelligence, and a Pure
Chain-enabled data management system. PureTrack-IR imple-
ments infrared imaging for robust performance in challenging
environments such as darkness, smoke, and adverse weather
conditions. The system employs optimized YOLOvI11x [11]
as object detection model on edge computing devices. Agent
Al modules enable autonomous decision making through
reinforcement learning techniques, reducing operator workload
and response delays in fast paced combat scenarios. The Pure
Chain [12] blockchain-based data management system [13]
ensures data integrity and security through smart contracts,
Smart Auto Mining Plus (SAM+), and Proof of Authority and
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Fig. 1: Overview of the proposed PureTrack-IR

Association (PoA?) [14] consensus mechanisms that support
secure peer-to-peer transactions without traditional ledgers.
This decentralized architecture eliminates centralized vulner-
abilities while providing automated, tamper-proof validation
mechanisms for surveillance data and mission critical com-
mands exchanged between field personnel, command centers,
and autonomous UAV units. The comprehensive integration of
these technologies creates a robust military surveillance frame-
work that enhances situational awareness, operational security,
and tactical effectiveness in complex defense missions while
maintaining real-time processing capabilities and autonomous
operation in dynamic military environments.
The key contributions of this paper are as follows:

o Integrated IR imaging technology for robust detection in
low visibility and adverse environmental conditions.

o Developed an edge-optimized YOLOv11x object detec-
tion model and an Agent Al framework enabling real-time
autonomous operation.

o Implemented the Pure Chain system with smart contracts
and PoA? consensus mechanism to ensure decentralized,
tamper-proof communications between field units and
command centers.

II. METHODOLOGY

The Figure 1 illustrates PureTrack-IR system follows a clear
sequence of steps: first, infrared images are captured by UAV-
enabled thermal cameras and go through basic preprocessing
to remove noise and standardize frames. Then, these images
are analyze with an optimized YOLOv11x model that detect
and identifies hostile military personnel. From IR captured
image to detection outputs managed through an Agent Al
module so that it computes threats, prioritize targets, and adjust
the mission plan autonomously. After that the output result

converted into text and store it into json file. At the same time
this json result, and Al decision is securely packaged into
a Pure Chain transaction. The smart contracts enforce access
control, and PoA? consensus validates and records each event.
Finally, authorized units and command centers read the Pure
Chain ledger to receive live updates and send new instructions.
This workflow ensures uninterrupted infrared surveillance, fast
pace intelligence, self-guided decision making, and tamper-
proof data management throughout the operation.

A. IR Image Preprocessing

After the system captures infrared images through UAV-
enabled thermal cameras, these raw images are first processed
to ensure they are suitable for reliable analysis. The IR image
preprocessing step begins with Image Resizing. Then, noise
minimization with pixel normalization, where pixel values are
adjusted to maintain consistent brightness and contrast across
all frames, making detection results more robust. Frame align-
ment methods applied to further enhance image clarity and
stabilize the input for the subsequent object detection stage.
This standardized preprocessing ensures that the YOLOv11x
model receives clean and uniform input, which is essential for
achieving accurate and real time threat detection within the
PureTrack-IR system.

a) Image Resizing: All images are uniformly scaled to
640 x 640 pixels, ensuring a consistent tensor shape for
efficient batch processing and seamless integration with the
model’s architecture:

Lesized = reSiZC(I, (6407 640))

b) Noise Minimization: In the PureTrack-IR system,
noise minimization uses dark-frame subtraction to remove
fixed pattern noise, flat field correction to normalize pixel
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response, temporal filtering to smooth random frame-to-frame
variations, and spatial correction to balance brightness across
each image, ensuring stable, high quality inputs for the
YOLOv11x model. The equation as follows:

Iproc(xvy) = S{T[G(xay) Iraw(x7y) - Idark(xay)]}'

where I,y (z,y): original thermal image, Igak(z,y): dark-
frame image for fixed-pattern noise removal, G(x,y): flat-
field gain map for pixel response normalization, 7 [-]: temporal
filtering, S{-}: spatial correction.

c) Frame Alignment Method: In the PureTrack-IR sys-
tem, frame alignment corrects for UAV motion and scene shifts
by registering each infrared frame to a common reference
using feature-based homography estimation followed by sub-
pixel interpolation. The I, denote consecutive preprocessed
frames. A homography matrix H such that

/

t t hi1 hia  his
y|~H|y]|, H = |ha1 hoa hos
1 1 hsi hsa 1

Each pixel (z,y) in I;11 is then mapped to (2',y’) in the
reference frame via subpixel bilinear interpolation:

aligned -1 T
I:—l—l%ne (m/,y/) = It+1(H [xlvylvl] )
This process minimizes motion induced misregistration,
ensuring that the YOLOv11x detects and operates on stabilized
inputs for accurate hostile military localization.

B. YOLOvIIx Model Implementation

In this paper, The YOLOvI11x object detection model was
trained and evaluated on a custom IR UAV dataset, consisting
of 75 videos with a total of 96,813 IR frames, split into 55
videos for training, 12 videos for validation, and 8 videos for
testing purposes. The model training and validation were per-
formed on a desktop workstation equipped with an NVIDIA
GeForce RTX 3060 Ti GPU, while model deployment and
inference tests were conducted on edge computing hardware
using an NVIDIA Jetson device. The model was trained and
deployed on UAV edge hardware using the AdamW optimizer
with a learning rate of 0.001667 and momentum of 0.9, replac-
ing default settings of 1r0=0.01 and momentum=0.937.
During training, six data-loader workers load infrared frames
standardized to 640 x 640 pixels and 16 batch size for uniform
tensor shapes and efficient batching. The model backbone was
removed by 30% and quantized to 8-bit precision to reduce
computational demands, while the detection head incorporates
a streamlined C2PSA block to preserve accuracy with fewer
parameters. After 100 epochs of training, the removed and
computed network is exported to TensorRT using FP16 pre-
cision for onboard inference, achieving throughput above 30
FPS on NVIDIA Jetson platforms. This configuration ensures
fast, accurate IR hostile military localization within the strict
computational constraints of military UAV operations.

a) Military Detection: Each preprocessed IR frame Iis
input to the YOLOv11x network, which employs a multi-scale
feature extraction backbone and detection heads to predict
bounding boxes, confidence scores, and class probabilities
for hostile military personnel. The raw detection output is
represented as:

{(zi, yi, ws, hy, Ci,pi)}fy:l
where (x;,y;) represents the center coordinates of the bound-
ing box, (w;, h;) are the width and height, ¢; is the confidence
score, and p; is the probability of the detected class.

b) Non-Maximum Suppression (NMS): Detections with
confidence scores ¢; < T, are discarded. The remaining boxes
are refined through Non-Maximum Suppression. For any pair
(4,7),f IoU(b;, b;) > Tiou, the box with the lower confidence
is removed. The final filtered detection set is defined as:

D = {bk ‘ Ck Z Td, Vj : IOU(bk,bj) S HOU}'

where D is the final set of filtered detections, b; is a can-
didate bounding box, cj is its confidence score, Ty is the
minimum confidence threshold, IoU(by, b;) is the Intersection-
over-Union between boxes by, and b;, Ti,u is the IoU threshold
for suppression, and Vj means the condition must hold for all
other boxes b;.

¢) Location Tracking: Each final detection by € D is
transformed into geospatial coordinates (¢, A\;) using UAV-
specific telemetry data, including GPS location, altitude, and
camera pose. This mapping is computed as:

(¢r, Ax) = GeoMap(by, Pyav, Ccam)-

where ¢, and )\, represent the latitude and longitude of the
detected military personnel, Pyay denotes the UAV’s GPS
and altitude information, and C,,, refers to the internal and
external camera parameters. The resulting detection record
(&%, Mk, th, cx) is then passed to the Agent AI module for real
time decision making and securely logged to the Pure Chain
data management system.

C. Agent Al Framework Workflow

The Agent Al module in the PureTrack-IR system pro-
cesses detection outputs from the YOLOvllx system such
as bounding box coordinates, confidence scores, and class
probabilities together with UAV environmental metadata to
develop a clearer understanding of its operational area. It
tracks recent detection events in short-term memory, enabling
the identification and monitoring of real threats by assessing
detection confidence and proximity to key zones. Using clear
rules, adaptive scoring, and reinforcement learning, the Al
scores each threat and ranks detected entities according to mis-
sion priorities and real-time changes. Reinforcement learning
allows the system to learn optimal responses from previous
interactions, improving its autonomous decision making. This
approach ensures the most critical targets receive prompt
attention and, when necessary, uncertain cases are flagged
for human review. The system generates actionable UAV
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commands such as route adjustments or tracking sequences
while logging all key decisions to Pure Chain for audit and
coordination. This enables autonomous, efficient, and secure
military tracking operations.

Algorithm 1 Agent Al Mission Control System

Require: YOLOv11x outputs
UAV data, mission parameters
Ensure: UAV commands, blockchain logs
1: while system active do
2:  Receive detection outputs from YOLOv11x
: Fuse with UAV metadata

{(Z’i, Yi, Wi, hia ci7pi)}£\;1a

3

4:  Update short-term memory buffer

5:  for each detection i do

6 Compute threat score 7; (based on c¢;, location,
consistency)

end for

Rank threats based on 7; and mission priority

. Select top-k targets

10:  for each selected target do

% 3

11: Decide action (track, alert, reroute)
12: if ¢; < T, then

13: Flag for human review

14: end if

15:  end for

16:  Generate UAV commands

17: Log (bk, Tk, ¢k, Ak, timestamp) to Pure Chain
18: end while=0

D. Pure Chain Data Management System

Figure 2 illustrates Pure Chain Transactions and Contract
Deployment. The system is a lightweight, blockchain-based
solution integrated into the PureTrack-IR system to ensure
secure, tamper-proof management of all critical mission data.
After each inference and decision cycle by the Agent Al mod-
ule, essential information including detection results, times-
tamps, and locations is formatted into interplanetary file sys-
tem (IPFS) storage. These records are cryptographically signed

Fig. 2: Pure Chain Transactions and Contract Deployment

and submitted to the Pure Chain distributed ledger, which
employs PoA? consensus mechanism specifically adapted for
real time, resource constrained UAV deployments. The smart
contract guarantees rapid validation and robust traceability
without dependence on external infrastructure, making it well
suited for difficult environments. Throughout the mission,

Pure Chain enables cross agent synchronization by securely
distributing validated records among collaborating UAVs and
command centers, supporting autonomous coordination and
real time situational awareness. Upon mission completion,
authorized users can efficiently retrieve immutable logs for
post mission review, analysis, and compliance documentation.
By embedding blockchain mechanisms directly into the data
pipeline, Pure Chain provides end-to-end data integrity, reli-
able event auditability, and transparent decision tracking for
military UAV operations in tracking hostile military.

1) The PoA* Consensus Mechanism: The PoA? consensus
mechanism in Pure Chain, secure low latency operation in
UAV-based military environments. It ensures a permissioned
set of authenticated validator nodes, each with a defined role,
among which block production rotates on a fixed schedule
to prevent any single point of control. For each transaction,
including IPFS content identifiers, metadata, and sender sig-
natures, validators verify identities and enforce role based
permissions using smart contracts, as well as check data
integrity. The designated block producer aggregates approved
transactions, signs and broadcasts a candidate block, and waits
for a majority of validators to confirm before finalizing the
entry to the chain ensuring an immutable, tamper-proof audit
trail. The Smart Auto Mining Plus (SAM+) module predicts
network load and dynamically optimizes block production
timing to maintain responsiveness, while dual operator co-
signing for critical mission data and distributed IPFS storage
add layers of human oversight and data resilience. This PoA?
approach delivers a robust, efficient, and transparent consensus
suitable for real time, trusted data management in resource
constrained and difficult UAV deployments in military track-
ing. Let the set of n validator nodes:

-V} (D

Then the block producer for block k is determined by the
rotating block—producer formula:

V={W1,Va..

Py = V((k mod n)-‘rl)

2

Furthermore, PoA? requires a minimum of validator ap-
provals to finalize each block. A block is committed once at
least:

n

7> 3)
These three equations (1), (2) and (3) combines the PoA?
mechanism of rotating production authority and simple ma-
jority finality.

2) Smart Contract Access Control Mechanism: The Pure
Chain system implements smart contract-based access control
to ensure secure and management of mission data within the
PureTrack-IR system. Each transaction such as a detection
record or threat assessment is controlled by smart contracts
that strictly enforce role based permissions for UAV operators,
validators, and command centers. Access rights are dynami-
cally assigned according to authenticated roles and mission
critical requirements, allowing only authorized personnel to
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TABLE I: Detection result of object detection models for IR and UAV applications.

Model Precision (%) | Recall (%) | mAP@0.50 (%) | mAP@0.50:0.95 (%) Detection Robustness
MobileNet SSD 82.5 84.0 86.5 47.5 Low—Moderate (fast, less robust)
YOLOv4 94.0 93.0 94.5 62.0 High

YOLOVS-S 90.8 92.2 94.0 57.0 Moderate—High
YOLOvV5-X 96.5 96.5 98.0 68.0 High
EfficientDet-D3 95.5 95.2 96.0 65.0 High

YOLOVS8-S 90.5 91.5 94.0 63.0 Moderate—High
PP-YOLOE 95.4 95.1 96.2 68.3 Very High
YOLOvV11x (ours) 98.3 98.9 99.4 68.9 Highest for complex IR tasks

F1-Confidence Curve : Precision-Confidence C

nnnnnnnnnnnnnnnnnnnn

Recall-Confidence Curve Precision. Recall Curve

Fig. 3: YOLOvI11x Model’s F-1, Precision, Recall, and Precision-Recall Curve

view, modify, or approve sensitive actions. Identity verification
is achieved via cryptographic signatures, while smart contracts
automatically log and audit all access attempts, updates, and
approvals. This approach guarantees that only authenticated
and permissioned person can interact with mission data,
ensuring operational security, accountability, and compliance
throughout all stages of autonomous UAV operations.
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Fig. 4: Confusion matrix

III. PERFORMANCE EVALUATION

The YOLOvI11x model supports the PureTrack-IR system
requirements for autonomous real-time hostile military detec-
tion, ensuring that each decision cycle produces reliable data
for downstream geo-referencing, Agent Al-driven prioritiza-
tion, and immutable logging within the Pure Chain data man-
agement backbone. This synergy positions YOLOvI1Ix as a

state-of-the-art backbone for tactical military UAV surveillance
and response missions.
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Fig. 5: YOLOv11x Model’s Training and Validation Loss

A. YOLOvIIx Model’s Performance Evaluation

Table I illustrates the detection accuracy metrics of ob-
ject detection models for IR and UAV applications. The
YOLOv11x model on an IR UAV dataset, highlighting its
exceptional detection capability in complex military environ-
ments. Figure 3 shows a precision of 98.3% and recall of
98.9%, the model demonstrates highly accurate object clas-
sification with minimal false positives or missed detections.
It achieves a near perfect mAP@50 of 99.4%, indicating
excellent localization and confidence in predicted bounding
boxes, while maintaining a strong mAP@50-95 of 68.9%,
reflecting robust performance across multiple IoU thresholds.
The architecture comprises 190 layers and approximately 56.8
million parameters, with a computational complexity of 154.4
GFLOPs, making it well suited for real time inference on edge
Al systems. These metrics confirm that the YOLOv11x model
is not only accurate but also efficient and reliable for real time
hostile military detection in IR UAV imagery.
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B. Smart Contract Performance Analysis

The smart contract module in the PureTrack-IR system
provides secure, automated access control and auditability
for all mission critical data, including UAV detected targets
and operational reports, by immutably recording every access
attempt, approval, and denial on the Pure Chain blockchain.
Seamlessly integrated with the PoA? consensus mechanism,
the module achieves low transaction latency 1-3 seconds and
high throughput 25-50 transactions per second, enabling real
time data management essential for military UAV operations.
Through strict role based authentication, cryptographic sig-
nature verification, and smart contract enabled permissions,
the system ensures that only authorized personnel can access
or modify sensitive mission records. This robust approach not
only secures and streamlines critical information flows but also
supports scalable, flexible workflows, empowering authorized
operators to reliably manage and coordinate mission data
within the PureTrack-IR framework.

C. IPFS Storage Analysis

PureTrack-IR offloads bulky image and metadata payloads
to IPFS, storing only compact CIDs and transaction headers
on-chain to control ledger growth. Each detection event trans-
action records a 256-bit CID, timestamp, and digital signature
(100 bytes), while command logs add another 80 bytes. At
an average mission rate of 10 events/s, on-chain storage
increases by 1.8 KB/s (6.5 MB/h). Even a 12h operation
thus requires only 78 MB of persistent storage. IPFS nodes
retain full image data with configurable pinning policies, while
PoA? validators archive older blocks beyond mission relevant
time windows. This hybrid storage design ensures a constant
on—chain footprint, predictable scaling, and flexible long-term
archiving, preventing excessive blockchain growth over time.

D. Multi-UAV Simulation Evaluation and Scalability Analysis

The PureTrack-IR framework demonstrates scalability po-
tential for multi-UAV swarm operations through distributed
Pure Chain consensus mechanisms. Performance evaluation
across varying swarm sizes 2-20 UAVs reveals that the PoA?
consensus maintains 5 second transaction latency for forma-
tions up to 20 UAVs, with acceptable degradation to 7-8
seconds for larger swarms. Each UAV operates autonomously
for YOLOvl1x inference while sharing threat assessments
through encrypted blockchain transactions, enabling collabo-
rative situational awareness without centralized coordination.

IV. CONCLUSION AND FUTURE DIRECTIONS

PureTrack-IR integrates infrared imaging, YOLOv11x de-
tection, Agent Al, and Pure Chain to enhance military UAV
surveillance in low visibility and difficult environments. IR
ensures robust sensing, YOLOv11lx delivers precise hostile
military identification, and Agent Al autonomously prioritizes
and responds to targets, reducing operator workload and
latency. Pure Chain secures data via SAM+, smart contracts,
and PoA? consensus, creating a decentralized, tamper-proof

system. Future work includes integrating multispectral sen-
sors, federated learning for collaborative Al updates, adaptive
blockchain scaling, and rigorous field trials to validate re-
silience and performance. This integrated solution significantly
advances real-time autonomous decision making capabilities in
military UAV surveillance.
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