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Abstract—Effective vessel tracking and the identification of
unusual behaviors are crucial for maritime security, particularly
in detecting loitering activities that may signal potential illicit
operations. This paper introduces an innovative framework for
detecting suspicious transshipment activities using Automatic
Identification System (AIS) data. Our approach combines AIS
data reconstruction and behavior classification to detect loitering
and coordinated vessel movements, even when AIS data is
incomplete or missing. Experimental results demonstrate the
effectiveness of this foundation in identifying suspicious maritime
activities such as transshipment and loitering behaviors.

Index Terms—Automatic Identification System (AIS), Loitering
Vessel Detection, Vessel Tracking, AIS Reconstruction, Illegal
Transshipment

I. INTRODUCTION

The maritime industry plays a critical role in global trade,
but it faces increasing challenges from illegal activities such as
Illegal, Unreported, and Unregulated (IUU) transshipment, loi-
tering, fishing, piracy, and smuggling [1]. Among these, detect-
ing illicit transshipment and loitering behaviors is essential for
ensuring maritime safety and security. Traditional surveillance
systems, which heavily rely on manual observation, often fail
to detect these abnormal behaviors in real-time, necessitating
more effective automated solutions.

Vessel tracking is a cornerstone of maritime navigation,
ensuring the safety of vessels and enhancing the efficiency
of port operations, search and rescue missions, and overall
maritime traffic management. The Automatic Identification
System (AIS) plays a central role in this process by providing
real-time data on vessel location, speed, course, and other
vital parameters [2]. However, raw AIS data often suffers
from gaps, noise, and irregularities, making accurate trajectory
prediction and behavior detection challenging, especially when
data is missing or sparse.

In the last few decades, the expansion of maritime activities
has raised significant concerns about Maritime Surveillance
(MS) and Maritime Situational Awareness (MSA), with vessel
trajectory reconstruction emerging as a key focus [3]. The
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ability to reconstruct a vessel’s position and movement di-
rection over time (from several minutes to several hours) is
essential for various MSA and MS applications, including
traffic control, route planning, and collision avoidance in
congested port environments.

This paper proposes a novel framework for detecting illegal
transshipment and loitering behaviors by combining AIS data
reconstruction with trajectory forecasting. Our method can
accurately track vessel movements and detect suspicious be-
haviors even in the presence of incomplete or noisy AIS data.
By integrating AIS data reconstruction and behavior detection,
we provide a robust solution for real-time anomaly detection,
offering significant improvements over traditional and existing
methods.

The key contributions of this study are:

e A novel framework for detecting suspicious transship-
ment activities.

o Capability to handle incomplete or noisy AIS data, a
common challenge in maritime surveillance.

o Experimental validation demonstrating the robustness and
accuracy of our method in identifying transshipment and
loitering behaviors in real-world maritime environments.

The remainder of this paper is organized as follows. Sec-
tion II reviews related work and current limitations in AIS-
based trajectory prediction. Section III introduces the proposed
method and architecture. Section IV presents our experimental
results, and Section V concludes with a discussion of future
directions and potential improvements.

II. PROBLEM STATEMENT AND RELATED WORK
A. Problem Statement

Detecting suspicious illegal transshipment and loitering
behaviors is a critical challenge for Maritime Situational
Awareness (MSA) and Surveillance (MS) [4]. Such activi-
ties often involve vessels remaining stationary for extended
periods, moving slowly in close proximity to other ships, or
coordinating along-side maneuvers to transfer cargo or catch
at sea. These behaviors are difficult to identify in real-world
scenarios due to incomplete, noisy, or sparse AIS data, which
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can occur when vessels turn off transponders, move through
low-coverage areas, or experience transmission delays.

The primary goal of this work is to accurately identify
these suspicious behaviors by reconstructing missing tra-
jectory data and analyzing vessel movements. Let Xp =
{X1,Xs,...,Xr} represent the historical AIS trajectory of a
vessel over T time steps. The task is to reconstruct any missing
or unreliable segments in this trajectory and then predict or
classify vessel behavior over the subsequent L time steps,
denoted }A’L, using the reconstructed data:

[X17X2,...,XT} — [Xl,XQ,...,XT] — YL (1)

Here, X, represents the reconstructed trajectory points that
correct gaps or errors in the original AIS data. The recon-
structed trajectories serve as a foundation for detecting three

types of suspicious transshipment behaviors:

1) Rendezvous Transshipment: Detecting vessels that loi-
ter or stay stationary, indicating potential cargo transfer.

2) Moving Transshipment: Identifying vessels moving
slowly in close proximity, suggesting rendezvous behav-
ior.

3) Along-Side Transshipment: Detecting vessels moving
in coordination, analyzing their spatial and temporal
alignment.

By integrating adaptive trajectory reconstruction, along with
behavior classification for stopping, moving, and along-side
events, this method addresses the challenges posed by in-
complete AIS data and provides a robust framework for real-
time detection of suspicious illegal transshipment activities.
This problem formulation emphasizes both data integrity and
behavioral analysis, making it suitable for monitoring vessels
in complex and sparsely covered maritime environments.

B. Related Work

Several methods have been proposed to detect suspicious
illegal transshipment and loitering behaviors, which are cru-
cial for maritime security [5]-[9]. These approaches can be
categorized into rule-based systems, machine learning models,
and hybrid methods.

Vasudevan et al. used machine learning (ML) models
with spatial-temporal data, such as AIS signals, to detect
transshipment events [6]. Their ensemble classifiers, like Ex-
tra Trees and Random Forests, achieved high accuracy (F1
score of 0.998). However, their approach faces challenges,
including interruptions in AIS signals when vessels turn off
their transponders and regulatory complexities, particularly in
regions with weak enforcement. Additionally, the method does
not address the common issue of incomplete AIS data, which
is prevalent in real-world maritime environments.

Miller et al. employed a rules-based method to identify two
main transshipment behaviors: “two-vessel encounters” and
”single-vessel loitering [7].” While their approach captures
basic behavior patterns effectively, it does not address the
problem of noisy or missing AIS data, leading to potential

false negatives. Furthermore, their method lacks a unified
solution for classifying behaviors in the real-world scenario.

Deng et al. proposed a hybrid model combining rule-
based systems and unsupervised learning, incorporating traffic
density as a feature to reduce misidentifications, especially
in high-traffic areas [8]. Despite this, their approach relies on
static thresholds, making it less adaptable to dynamic maritime
environments and varying sea conditions.

Zhou et al. focused on ship behavior classification based on
port visits, identifying coopering behaviors that may signal
illegal activities [9]. While effective for detecting certain
behaviors in fishing vessels, their method is limited to fishing
vessels and lacks integration with AIS data reconstruction
techniques, struggling with real-time detection of incomplete
data in remote maritime areas.

In contrast, our method offers a comprehensive framework
applicable to a wide range of scenarios, integrating AIS data
reconstruction, and behavior detection classification. Key inno-
vations include addressing missing or noisy AIS data through
interpolation methods, enabling precise trajectory reconstruc-
tion. Additionally, our system detects loitering, moving, and
along-side behaviors, providing a more flexible and detailed
detection system compared to methods that rely solely on
proximity or speed thresholds.

Additionally, we incorporate traffic density as a modulating
factor to minimize false positives, especially in high-traffic
areas like ports, and remove near-coastline trajectory data
where vessels are stationary at the port [10]. By applying
unsupervised clustering to dynamically adjust thresholds based
on specific sea areas, our approach is more flexible and
scalable across diverse maritime environments. This com-
prehensive framework addresses the limitations of existing
methods, offering a robust and accurate solution for detecting
illegal transshipment activities.

III. PROPOSED MODEL
A. AIS Data Reconstruction

To address anomalies and fill in missing trajectory segments
in AIS data, this approach utilizes short-distance and long-
distance interpolation techniques, ensuring data continuity and
accuracy across varying time gaps.

1) Kinematic Trajectory Interpolation: For small gaps be-
tween data points, we apply a Kinematic Interpolation tech-
nique. The trajectory is projected onto a 2D plane, and the
vessel’s velocity components in the east-west (up,,) and
north-south (v, ,,) directions are calculated using the speed
over ground (SOG) and course over ground (COG):

Up.m = SOG,, - $in(COG,,) )
Up.m = SOGy;, - cos(COG,,) 3)

The displacement (A, (A7)) and velocity (v, (AT)) in each
direction = € {p,m} after a time interval A7 are calculated
using kinematic equations:

AL (AT) = voy - AT + %am - AT? )
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Fig. 1: Proposed framework for detecting illegal transshipment and loitering behaviors using adaptive AIS data reconstruction.
The system integrates advanced techniques for detecting Rendezvous Transshipment, Moving Transshipment, Along-Side

Transshipment.

Where a, is the constant acceleration assumed during the
missing segment. For each interpolation, the error between the
simulated and actual end points is calculated as:

€x = Omodel — Sreal - AJ(AT) (5)

This error is then corrected using an adjustment function:

C.(AT) = ay - A3+ b, 6)

Where b,, is derived from the cumulative error, and the final
interpolated position is:

So(T) = Sow + Au(AT) + Co(AT) %

2) Cubic Spline Trajectory Interpolation: For larger gaps,
we utilize historical data from similar vessels. First, potential
candidate trajectories (traj,) are selected based on their spatial
and temporal proximity. The similarity between the target
trajectory (traj,) and each candidate is assessed using Dynamic
Time Warping (DTW):

(i, j) = d(ai, bj) +min (p(i — 1,7 — 1),

8
oli-Lg)e—1) ©

Where d(a;, b;) represents the Euclidean distance between
two trajectory points a; and bj;, and (i, j) is the cumulative
cost matrix. The optimal alignment is then determined by:

DTW (traj,, traj,) = ¢(p, q) ©)

Once the most similar trajectory is identified, missing tra-
jectory points are reconstructed using Spline Interpolation for
both the X and Y coordinates:

(10)

X (0) = Spline(t, X), Y (0) = Spline(t,Y)

Time scaling is applied to adjust for the duration of the
missing segment:
0 =p- (T, —Tp) (11)
Where = ATndidae/ AT arger is the scaling factor. The
final interpolated coordinates are computed as:

X' = Spline (0") + Xy, Y’ =Spliney (#")+Yy (12)

Reprojecting these coordinates into the WGS84 coordinate
system, we obtain the reconstructed positions (long, lat,).

3) Adaptive Reconstruction Framework: The adaptive re-
construction framework addresses both short and long dis-
tance gaps in AIS data, ensuring accurate interpolation and
maintaining trajectory continuity. It uses different interpolation
methods for short and long gaps based on the time difference

between consecutive points.
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For short gaps, where At is small, kinematic-based inter-
polation is applied, effectively handling the vessel’s short-
term dynamics. For long gaps, with At exceeding the short
gap threshold, historical trajectory migration with cubic spline
interpolation is used to estimate intermediate points.

The time constraints for Kinematic-based interpolation are
as follows:

short_threshold < At < long_threshold (13)

The time constraints for Cubic Spline interpolation are as
follows:

At > long_threshold (14)

The thresholds short_threshold and long_threshold deter-
mine which method to use, ensuring accurate reconstruction
across varying time gaps.

This framework efficiently reconstructs missing data, pre-
serving trajectory continuity and temporal resolution for reli-
able anomaly detection in maritime environments.

B. Suspicious Transshipment Detection

1) Offshore Boundary Creation: The offshore boundary is
defined to specify valid maritime areas for anchoring behavior
classification. Coastline data, represented as a set of points
¢ = {¢;}N,, is obtained from a GeoJSON file. We filter
the coastline by length, retaining only segments longer than a
threshold L, forming mainland seed segments Syj:

Su = {c¢; | Length(c;) > Liin + (15)

Next, a buffer zone B, with a radius of » = 10nm is
applied around the mainland segments to mark areas where
anchoring behavior is valid:

Binain = {CL‘ € R? (16)

min ||z —s|| <r }
seSy

This approach ensures that only relevant mainland regions
are considered for further analysis, providing a robust classi-
fication for anchoring activities.

2) Rendezvous Transshipment Detection: Rendezvous
transshipment detection focuses on identifying vessels
exhibiting loitering behaviors that may indicate transshipment
activities. This process involves tracking the movement
trajectories of vessels to detect suspicious rendezvous events,
where vessels meet in close proximity for extended periods.

The detection begins by defining an Arrival Region around
the mainland coastline. This region is represented by a buffer
zone with a radius of 10 nautical miles (nm), marking the area
of interest for detecting offshore loitering vessels:

A1onm = {Jc € R? ‘ nélng—CH < T}, r=10nm (17)

Where r denotes the distance from the coastline, typically
set to 10 nm, which forms the boundary for the offshore
area [11].

Moving vessel trajectories are then extracted and analyzed
to identify loitering behavior, characterized by vessels moving
slowly and remaining in the same area for extended periods.
Loitering behavior is detected by segmenting the trajectory
and examining the vessel’s movement. If the vessel’s speed
falls below a predefined threshold and the trajectory shows
minimal movement over a given period, the vessel is flagged
as loitering.

After detecting loitering vessels, clusters of vessels that
remain within close proximity (e.g., within 100 meters) for an
overlapping time window (e.g., 1 hour) are identified using the
DBSCAN (Density-Based Spatial Clustering of Applications
with Noise) algorithm [6]. This clustering groups vessels based
on spatial proximity and temporal overlap. A minimum of two
vessels is required to form a valid rendezvous event.

Upon identifying a rendezvous cluster, the convex hull H;
of the cluster is computed to define the boundaries of the
rendezvous region:

H; = ConvHull ({p7}7;1) ) (18)

where {p; :l;l are the spatial positions of vessels in cluster
7. A 25-meter buffer zone is added around the convex hull to
form the final rendezvous region R;:

Rj = Hj @ B(O725m), (19)

where @ denotes the Minkowski sum and B(0,25m) is a disk
of radius 25 m centered at the origin.

This region is flagged as suspicious, indicating a potential
location for illegal transshipment activities.

The detection results are visualized on maps that show the
arrival regions, loitering vessels, and rendezvous areas. These
visualizations assist in tracking and identifying suspicious
vessels operating in close proximity, which could be involved
in transshipment. Alerts are generated for any identified ren-
dezvous areas, facilitating further investigation by maritime
authorities.

3) Moving Transshipment Detection: Moving transship-
ment detection focuses on identifying vessels exhibiting low-
speed movement over extended periods, which could indicate
potential rendezvous activities between ships. This method
uses a sliding window approach to analyze vessel trajectories,
enabling the detection of suspicious rendezvous behavior,
where vessels move along similar paths in close proximity.

First, geographical coordinates (latitude and longitude) are
converted into a grid-based system to simplify vessel move-
ment analysis and clustering. The conversion equations are:

360 (lon + 180)
-

lat lat
y=2""In [tan (120) + sec <1goﬂ %25 (1)

Where:

o x and y are the grid coordinates,
o lon and lat are the longitude and latitude of the vessel,

(20)

1901



Table I: Trajectory Reconstruction RMSE (km) Comparison

Method RMSE (km)
Linear Interpolation 0.271
Cubic Spline Interpolation 0.183
Kalman Filter (KF) 0.429
Extended KF 0.354
Ours 0.161

e z is the zoom level that determines the grid resolution.
The sliding window approach segments the vessel’s trajectory
into small time intervals. Each window W; = {p1,p2,ps}
consists of trajectory points, including the ship’s MMSI,
timestamp, latitude, longitude, speed, and heading. The sliding
window moves across the data, tracking ship trajectories over
time:

Wi = {p1,p2,p3} (22)

Where k is the number of trajectory points within the time
window ¢. For this method, we consider time intervals of 1, 2,
and 4 hours. The use of these time intervals helps detect both
short- and long-term behaviors: a 1-hour window p; identifies
immediate movements, a 2-hour window ps detects medium-
duration behaviors, and a 4-hour window ps captures larger
events or extended interactions.

Loitering is defined when the vessel’s trajectory shows
redundancy, suggesting the ship is moving in a repetitive or
circular path, a common indicator of transshipment behavior.
As shown in Figure 1, The redundancy o is calculated as the
ratio of the trajectory length n to the area of the minimum
bounding rectangle c:

(23)

n
g = —
Cc

Where:

o n is the total trajectory length,
e c is the area of the minimum bounding rectangle around
the trajectory.

If o > 1, the vessel is classified as loitering, suggesting
potential transshipment activity.

This approach efficiently detects moving transshipment be-
havior by leveraging sliding window analysis, trajectory grid-
based calculations, and the redundancy criterion.

4) Along-side Detection using Dynamic Time Warping
(DTW): Along-side detection identifies potential transship-
ment events by analyzing the alignment and proximity of
vessel trajectories over time. This is achieved using Dynamic
Time Warping (DTW), which compares vessel trajectories in
both spatial and temporal dimensions. The key steps in along-
side detection are as follows:

First, the map is divided into smaller grid cells based
on latitude and longitude, providing a structured way to
analyze vessel movements. Each grid point is represented by
a coordinate pair (grid_lat, grid_lon):

(24)

grid_lat = lat/g, grid_lon = lon/g

Where g is the grid resolution factor, determining the size of
each cell. DTW also used to compares segments of two vessel
trajectories within a predefined time window. The Euclidean
distance between points A; = (z;,y;) and B; = (z;,y;) is
computed as:

Di,§) = (@i — 232 + (s — y)?

The DTW algorithm aligns vessel trajectories by adjusting
for time shifts, considering both spatial proximity and temporal
overlap. Along-side transshipment is detected if:

(25)

o« The DTW distance between segments is below 100

meters.

o The time difference between segments is less than 30

minutes.

If both conditions are met, vessels are classified as in-
volved in along-side transshipment. The method uses gridding,
buffering along the coastline, and DTW to detect suspicious
transshipment events in maritime AIS data.

IV. EXPERIMENTAL EVALUATION
A. Dataset Overview & Evaluation Metrics

We validate our approach on a large-scale AIS corpus
from the Korean Exclusive Economic Zone (EEZ), span-
ning November 2023—March 2024. The dataset contains over
133,000 distinct voyages from fishing vessels, cargo ship —
collected via AIS messages. Each record includes core fields
(MMSI, timestamp, latitude, longitude, speed over ground,
and course over ground). The mix of diverse trajectories and
segments with missing transmissions enables a comprehensive
assessment of our approach.

In terms of quantitative aspect, we adopt Root Mean Square
Error (RMSE) metric to evaluate the core reconstruction mod-
ules. We have measured using RMSE based on the haversine
distance between predicted and true vessel positions. The
RMSE over a reconstructed trajectory is defined as:

RMSE,, = (26)

where §; is the geodesic error (in km) at the i-th point and
N is the number of reconstructed points. Lower RMSE values
indicate more accurate trajectory estimation.

B. Results

Table I compares the performance of our method with base-
line models, such as the Extended Kalman Filter (EKF). The
results show a significant improvement in both the maximum
and mean RMSE for vessel trajectory prediction.

Table I shows that our method has the lowest error
(0.161 km). Relative to the baselines, RMSE decreases by
0.022km vs. Cubic Spline (0.183km), 0.110km vs. Linear
Interpolation (0.271km), 0.193km vs. EKF (0.354 km), and
0.268km vs. KF (0.429km). The pronounced gap between
spline- and filter-based approaches indicates that simple kine-
matic models in (E)KF underfit the non-linear, irregularly
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Rendezvous Transshipment Moving

Fig. 2: Detected Suspicious Transshipment Visualization

sampled AIS trajectories, whereas our method better captures
trajectory geometry and handles missing data.

The corpus spans 21,000 vessels across 133,787 voyages
(mean ~ 6.33 voyages/vessel). We detect 7,233 suspicious
interaction instances in total. Rendezvous clusters (3,354;
2.51% of voyages) and moving loitering (3,285; 2.44%) occur
at comparable rates (ratio ~ 1.02), each about 25 rendezvous
detections per 1,000 voyages and ~ 24 moving vessels per
1,000 vessels. Alongside transshipment pairs are rarer (594;
0.45% of voyages; ~ 4.47 per 1,000 voyages; 2.83 per 100
vessels), comprising only 8.21% of all detections. Overall,
rendezvous slightly dominates, followed closely by moving
loitering, indicating that cluster-based encounters are at least
as prevalent as single-vessel loitering behaviors in this dataset.

The figure 2 shows visualizations of loitering and suspicious
transshipment: Rendezvous—multiple vessels co-locate at low
SOG; Moving—brief close-approach while underway with par-
tial heading alignment; Alongside—near-parallel co-movement
with tight lateral separation. The detector relies on proximity,
kinematic alignment (COG/SOG), and temporal persistence,
which explains the higher incidence of rendezvous and moving
events compared with the stricter alongside pattern.

These experiments show that our reconstruction method out-
performs common baselines, providing tighter paths with less
drift under irregular sampling. The improved tracks enhance
proximity/heading features, enabling more reliable detection of
rendezvous, moving, and alongside events. While the detection
framework shows high accuracy, further evaluation, such as
cross-checking with satellite imagery, is needed to confirm
the findings and ensure full certainty.

V. CONCLUSION

We presented a robust pipeline for detecting loitering and
suspicious transshipment from AIS, combining trajectory re-
construction and downstream behavior analysis. Across large-
scale EEZ data, the method yields markedly lower reconstruc-
tion error than classical filters (e.g., EKF) and interpolation

Table II: Detection Outcomes (Normalized by Total Voyages)

Pattern Count | % of Voyages
Moving loitering 3,285 2.47%
Alongside pairs 594 0.45%
Rendezvous clusters (> 2 vessels) 3,354 2.52%
Total 7,233 -

baselines, producing tighter tracks that
ity/heading cues for encounter detection.

The approach is lightweight—Ilinear in the number of
points—and suitable for near-real-time monitoring at EEZ
scale. A key limitation is sensitivity to severe AIS gaps and
spoofed messages. In future work we will integrate auxiliary
signals (e.g., weather, radar) and explicit multi-vessel inter-
action modeling, and refine the taxonomy and classification
of complex behaviors to further improve reliability and inter-
pretability.

strengthen proxim-
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