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Abstract— Over the past three decades, autonomous vehicles 
have expanded the Operational Design Domain (ODD) from 
highways to unstructured urban environments. In response, 
various technologies have been actively developed to ensure the 
safety of autonomous driving systems. However, the activation 
of Autonomous Emergency Braking (AEB) under hazardous 
conditions has introduced a new concern: the risk of secondary 
rear-end collisions. Despite this emerging issue, systematic 
strategies to mitigate such risks have not been sufficiently 
established. To address this issue, this study proposes a novel 
AEB system that integrates Responsibility‑Sensitive Safety 
(RSS) with the Autonomous Driving Model (ADM). The 
autonomous vehicle collects real-time information on 
surrounding in-lane traffic through vehicle-to-infrastructure 
(V2I) communication and determines the AEB activation timing 
based on front and rear safety assessments using RSS and ADM. 
The proposed AEB framework effectively prevents or mitigates 
rear-end collisions typically induced by conventional AEB 
systems. Monte Carlo simulations, including case studies, were 
conducted to evaluate the performance of the proposed AEB 
system. Simulation results revealed a meaningful reduction in 
accident frequency and collision energy. This highlights the 
effectiveness of the proposed approach as a practical strategy 
for enhancing both safety and traffic flow, with expected 
contributions to the commercialization and further 
advancement of autonomous driving technologies. 

Keywords—Autonomous driving, Autonomous Emergency 
Braking, Responsibility-Sensitive Safety, Autonomous Driving 
model, Vehicle-to-Infrastructure 

I. INTRODUCTION 
According to the 2023 statistics from the Traffic Accident 

Analysis System (TAAS) of the Korea Road Traffic 
Authority, the total number of traffic accidents decreased by 
approximately 11.3%, from 223,552 cases in 2014 to 198,296 
cases in 2023[1]. Among all reported cases, vehicle-to-vehicle 
collisions accounted for 152,935 cases (77.1%), with frontal 
collisions at 77,537 cases (50.7%) and rear-end collisions at 
31,939 cases (20.9%), ranking first and second, respectively, 
among all accident types. In highway settings, 2,030 out of 
5,220 accidents (38.9%) were rear-end collisions. According 
to the report “Final Rule: Automatic Emergency Braking 
Systems for Light Vehicles” (2024) published by the U.S. 
National Highway Traffic Safety Administration (NHTSA), 

an analysis of data from 2010 to 2019 excluding 2020 and 
2021 due to distortions caused by the COVID-19 showed that 
rear-end collisions were the most frequent type of crash, 
accounting for 32.5% of all traffic accidents. The number of 
rear-end collisions increased from 1,692 cases in 2010 to 
2,363 cases in 2019. In addition, the proportion of fatal rear-
end collisions rose from 5.6% in 2010 to 7.1% in 2019, 
marking a 1.5% increase over the period[2]. In response to the 
increasing prevalence of rear-end collisions, Euro NCAP 
began including the installation of AEB systems as an 
evaluation criterion in the safety assessment program in 2014 
to encourage broader implementation. Nevertheless, the 
mitigation of rear-end collision risk remains insufficient[3]. 

The activation of an AEB system is classified as part of the 
mitigation phase according to international standards. During 
the mitigation process, vehicle environmental sensors monitor 
the lead vehicle and dynamic road environment in real time. 
When the real time evaluation of collision risk indicates that a 
predefined threshold has been exceeded, the system 
automatically activates emergency braking to either avoid the 
collision or mitigate the collision [4]. Various threat 
assessment methods have been proposed in the field of 
autonomous driving research to determine the activation 
timing of AEB systems. Time-To-Collision (TTC) is one of 
the most fundamental safety metrics, estimating the remaining 
time until a potential collision based on relative distance and 
velocity. Despite its simplicity, TTC does not consider relative 
acceleration or road surface conditions, limiting its 
applicability in dynamic driving environments. Time 
Headway (THW) is calculated by dividing the relative 
distance by the velocity of the ego vehicle. Although THW 
serves as an intuitive metric of traffic flow stability, the metric 
remains insensitive to critical situations because the value is 
unaffected even when the lead vehicle is at a complete stop. 
Deceleration Rate to Avoid a Crash (DRAC) calculates the 
equivalent deceleration required to avoid a collision and 
allows for direct comparison with the braking capability. 
However, the risk estimation based on DRAC may be 
underestimated, as the calculation does not reflect driver 
reaction delay or reduced road surface friction. Braking Threat 
Number (BTN) normalizes the DRAC by the maximum 
braking capability of the vehicle, enabling immediate 
identification of physically unavoidable collisions when the 
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value exceeds one. However, the metric is highly sensitive to 
estimation errors in braking performance and to variations in 
the road surface friction coefficient. The conventional RSS 
framework defines a minimum safe distance by incorporating 
multiple factors such as reaction delay and maximum 
deceleration, enabling the framework to serve as a foundation 
for legal reasoning. However, the formulation does not 
account for the safety margin of following vehicles[5], [6], [7], 
[8], [9], [10], [11]. Accordingly, recent reports have identified 
cases in which vehicles equipped with both Forward Collision 
Warning (FCW) and AEB systems exhibited approximately 
20% higher rear-end collision rates compared to vehicles 
equipped with only FCW or low velocity AEB[12]. The 
observed increase in rear-end collision rates suggests that 
although AEB is effective in avoiding collisions with lead 
vehicles, the system remains insufficient in mitigating the risk 
of secondary rear-end collisions following abrupt deceleration. 
In addition, reliance on simple threshold based metrics such 
as TTC during mitigation scenarios likely contributes to the 
overestimation or underestimation of actual risk, as such 
metrics fail to adequately account for complex factors 
including changes in lead vehicle acceleration, variations in 
road surface friction, and the available response time of 
following vehicles. Therefore, minimizing accident damage 
requires the simultaneous consideration of both lead and 
following vehicles. In addition, a threat assessment and 
braking strategy based on comprehensive safety metrics, 
rather than simple threshold values, is essential for effective 
collision mitigation[13], [14], [15], [16]. 

To overcome the limitations of conventional RSS based 
models, this study proposes a following vehicle safety metric, 
termed RSSADM, by extending the conventional RSS model to 
incorporate the unique characteristics of autonomous vehicles, 
including shorter reaction delays and enhanced braking and 
acceleration capabilities as well as an acceleration constraint 
that accounts for the safety margin of following vehicles. This 
approach enables precise assessment of both front and rear 
risks in multi-agent environments while maintaining rule-
based safety guarantees. The ego vehicle receives real time 
information on surrounding in-lane traffic through V2I 
communication and evaluates the safety of both lead and 
following vehicles using RSS metrics. Once safety with 
respect to the lead vehicle is ensured, the ego vehicle assesses 
the predicted RSSADM for the following vehicle to determine 
the appropriate activation timing of the AEB system. 

The following are the contributions of this paper: 

1. RSSADM is proposed as an extended following vehicle 
safety metric that integrates the ADM into the 
conventional RSS framework. 

2. An AEB system is proposed that determines the 
activation timing based on simultaneous safety 
evaluation of both lead and following vehicles using 
RSS and RSSADM. 

 
Fig. 1. Overall structure of the proposed algorithm. 

II. OVERALL STRUCTURE OF THE PROPOSED ALGORITHM 
The overall structure of the proposed algorithm is 

described in Fig. 1. The information required to perform the 
proposed algorithm is provided by the upper module, which 
consists of vehicle filtering, localization, and perception. 
Vehicle filtering identifies the ego vehicle’s position, velocity, 
heading, and acceleration. Localization identifies the global 
position and route through map information, while perception 
recognizes the target vehicle’s distance, velocity, and heading 
to the road through ego vehicle environment sensors and V2I 
perception and communication. The algorithm proposed in 
this study consists of two modules: The safety assessment 
module for lead and following vehicles evaluates safety 
conditions based on target vehicle information provided by the 
upper level module. The evaluation includes current RSS and 
current RSSADM, as well as predicted front RSS and RSSADM 
at each future time step. The AEB activation timing module 
determines the appropriate braking activation time based on 
the assessed safety metrics: namely, current RSS, current 
RSSADM, predicted RSS, and predicted RSSADM.  

III. VEHICLE MODEL 
The vehicle dynamics were modeled using a point-mass 

model, which simplifies the vehicle as a mass particle on a 
planar surface by neglecting complex body motions such as 
slip angle, pitch, and roll. The structure of the model is as 
follows:                        cos ∙  ∙                       sin ∙  ∙      ∙      ∙  1 

The origin of the highway coordinate system is located at 
the center of the highway. ,   ,  are the global x position, 
y position, and heading angle, based on the highway 
coordinate system. dt is the sampling time,  is the velocity,   is the acceleration, and   is the yaw rate. Based on the 
highway map, a second-order polynomial regression equation 
is defined to connect the current location with the vehicle’s 
driving route to a preview point with a preview time of 1.5 
seconds:        

      1  12 1 0   2 

a, b, and c are coefficients used to define the curve from 
the current position to the target position. Given the driving 
route   defined by the 2nd-order polynomial regression 
equation, the curvature  is calculated using the first-order 
derivative and second-order derivative of the curve. The 
curvature   and the corresponding yaw rate   are 
calculated as follows: 

  
1    21  2   3 

  , ∙  4 

Based on the calculated yaw rate  , the desired velocity 
and acceleration of the vehicle are calculated as follows: 
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,  min ,,, max ,,,   5 

,  min ,, max ,, , − , 6 

,,, ,, and minimum velocity values 16.7m/s and 
1m/s, ay is a maximum lateral acceleration of 3m/s2 . The 
desired velocity is adjusted according to minimum and 
maximum velocity constrained by lateral acceleration and 
yaw rate with vehicle dynamics and operating requirements. 
The ,  and ,  represent the current velocity and the 
calculated desired velocity, respectively, while , 
represents the desired acceleration. The , value is adjusted 
according to the difference between the current state and the 
desired state so that the velocity is maintained within a specific 
range of highway traffic law constraints. 

IV. BRAKE TIMING DETERMINATION BASED ON SAFETY 
METRICS 

Heterogeneous autonomous vehicles, characterized by 
varying control software and driving policies, exhibit different 
levels of uncertainty across perception, decision making, and 
control domains. Therefore, the future trajectories of both lead 
and following vehicles are predicted simultaneously, and the 
activation timing of the AEB system is determined by 
applying integrated safety metrics such as stopping distance 
margin and reaction time margin. In this way, the proposed 
approach aims to prevent both underestimation and 
overestimation of actual risk, thereby enabling not only the 
avoidance of primary collisions with lead vehicles but also the 
mitigation of secondary rear-end collisions caused by sudden 
braking. Section A details the procedure for evaluating the 
safety of lead and following vehicles, while Section B 
describes the method for determining the AEB intervention 
timing based on the evaluation results.  

A. Safety Assessment 
This study confines the scope of risk analysis for collision 

avoidance and mitigation to the ego vehicle's lane (in-lane). 
On highways, steering based evasive maneuvers may trigger 
secondary collisions due to potential conflicts with adjacent-
lane vehicles or abrupt lateral movements by the ego vehicle. 
Therefore, the safety objective is focused on braking-based 
risk mitigation. The safety evaluation is structured in two 
stages. First, the future trajectories of both lead and following 
vehicles are predicted using a Kalman Filter (KF). Second, at 
each time step, RSS and RSSADM are computed to account for 
the safety of the lead and following vehicles, respectively, and 
a composite risk index is derived by normalizing the relative 
distance based on both front and rear safety conditions. Each 
risk index is compared against a predefined threshold to 
classify the situation into either a safe range or a threat range. 
This section provides a detailed explanation of the calculation 
procedure and parameter setting methodology. 

First, to predict the motion of both lead and following 
vehicles, the state transition model of the Extended Kalman 
Filter (EKF) is first defined. The inputs to the EKF consist of: 
(1) the driving path of surrounding vehicles included in the 
highway map, (2) target vehicle information received via V2I 
communication, and (3) surrounding vehicle information 
detected by the ego vehicle’s environmental sensors. The 
nonlinear state transition function  is derived by substituting 
equations (4) and (6) into equation (1). Due to the nonlinearity 

of the transition model, the process update is implemented in 
the form of an EKF. The prediction is based on the current 
information of surrounding vehicles, and considering that the 
driving scenarios do not involve significant environmental 
uncertainty, only the process update step is executed to ensure 
real time computational efficiency.      ,    , 7 

  ,   ⎣⎢⎢
⎡  cos ∙  ∙   sin ∙  ∙    ∙    ∙  ⎦⎥⎥

⎤ 8 

RSS defines the minimum longitudinal safe distance by 
assuming a worst case scenario. If the lead vehicle decelerates 
immediately at a rate no greater than the maximum 
deceleration, and the following vehicle accelerates during the 
reaction delay at a rate less than the maximum acceleration, 
then decelerates at least at the minimum deceleration until 
coming to a complete stop, a collision between the two 
vehicles does not occur. The basic RSS model defined in [15] 
is as follows: 

 
⎣⎢⎢
⎢⎡  12 ,  2,− 2, ⎦⎥⎥

⎥⎤


9 

  represents the minimum longitudinal safe distance 
that the following vehicle must maintain from the lead vehicle 
to avoid a collision.   is the current velocity of the following 
vehicle, and  is the reaction delay of the following vehicle. ,  represents the maximum acceleration the following 
vehicle may apply during the reaction delay, while ,  
represents the minimum guaranteed deceleration applied after 
the reaction period.  is the velocity of the lead vehicle, and ,  represents the maximum deceleration the lead 
vehicle may apply immediately. 

The basic RSS formulation guarantees a safe distance only 
with respect to the lead vehicle when the ego vehicle is 
positioned between leading and following vehicles, but it does 
not account for the rear safety margin required for the 
following vehicle to stop safely. To address this limitation, 
this study integrates the constant velocity travel distance and 
uniformly accelerated braking distance formulas, and 
introduces an ADM by replacing the human driver reaction 
delay specified in UNECE R157 with the response delay 
characteristic of autonomous systems[18]. From the 
perspective of the following vehicle, the ego vehicle acting as 
the lead vehicle limits its maximum deceleration , 
to the value permitted by the ADM. In this way, the model 
ensures that the following vehicle can maintain the minimum 
longitudinal safe distance required to come to a complete stop 
without a collision. The ADM is defined as follows: 

,  2 −    10 

  is the relative velocity with the following vehicle,   is the relative distance,  is the reaction delay of the ego 
vehicle (set to 0.2 s), and   represents the minimum 
guaranteed expected deceleration capability of the following 
vehicle, assumed to be 4m/s². 
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Fig. 2. Optimal AEB Activation Timing Selector 

The final formulation of the minimum longitudinal safe 
distance with the following vehicle, as proposed in this study 
and represented as RSSADM, is defined as follows: 

, 
⎣⎢⎢
⎢⎡  12 ,  2,− 2, ⎦⎥⎥

⎥⎤


11 

The parameters used in the RSS model are set as follows:   0.2 , ,  1.5/ , ,  −4/ , 
and ,  −6.64/ . The parameters used in the 
RSSADM model are set as follows:   0.2 , , 1.5/ , ,  −4/ , and , , =ADM value. 

B. Optimal AEB Activation Timing Selector 
This section describes the algorithm for determining the 

latest possible yet safe activation timing of the AEB system, 
based on the front and rear risk indices derived in Section A. 
The foremost principle of the algorithm is to ensure safety 
with respect to the lead vehicle at all times. Since rear safety 
cannot be considered unless front safety is first secured, the 
RSS condition must always be satisfied as the primary 
constraint, regardless of the situation. The algorithm decision 
flow of the Optimal AEB Activation Timing Selector is 
illustrated in Fig. 2. 

V. RESULTS 

A. Simulation Setting 
This study assumes a four-lane bidirectional highway in 

Fig. 3 where collision and rear-end accidents frequently occur. 
The thick solid lines on the outer edges represent road 
shoulders, while the orange solid line in the center denotes 
bidirectional separation. From the infrastructure perspective, 
a Cooperative Intelligent Transport Systems(C-ITS) center 
and Road Side Units(RSUs) are installed along the roadway. 
RSU collects the position, driving direction, and velocity of 
each vehicles from vehicle V2I communication packets, and 
transmits this information to the C-ITS center. The center is 
assumed to integrate and process the collected data and 
redistribute it to nearby vehicles via the RSUs in the form of 
V2I messages. Fig. 3 visualizes the overall traffic scenario in 
a global coordinate system centered on the midpoint of the 
highway. 

TABLE I.  INITIAL CONDITION FOR CASE STUDY 

Vehicle DDTO,ini(m) Vini(m/s) Vmax(m/s) 

Ego 117 8.3 16.7 

Target1 82 6.9 13.9 

Target2 102 8.3 16.7 

Target3 157 8.3 19.4 

Target4 67 6.9 16.7 

 

Fig. 3. Highway Simulation Map with C-ITS Center and RSU. 

B. Case Study 
Fig. 4 is the simulation scenario for the case study. A 

driving situation is assumed in which one ego vehicle and six 
target vehicles are traveling together on a highway. Among 
them, two target vehicles are already stopped on the road due 
to a prior collision. Target 1, which is the lead vehicle of the 
ego vehicle, is configured in a scenario where it detects a 
hazard and activates emergency braking immediately after a 
cut-out event occurs, in which the preceding vehicle departs 
from the lane to avoid the collision site. 

The ego vehicle follows Target 1 while maintaining ACC 
level 1(i.e., a 15m following distance at a velocity of 15m/s). 
When Target 1 performs emergency braking to avoid the 
accident, the ego vehicle classifies the situation as a mitigation 
phase and proceeds to evaluate the safety conditions of both 
the lead and following vehicles. Based on the results of this 
evaluation, the AEB activation timing is determined once, and 
no further reassessment is performed thereafter. 

Fig. 5 shows the minimum safe distances for both lead and 
following vehicles, as well as the actual relative distances, 
calculated at each time step from the moment the ego vehicle 
enters the mitigation phase until it comes to a complete stop. 

 
Fig. 4. Highway Case Study Simulation Scene. 
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Fig. 5. Safety-Metric Results for the Case Study.  

 

Fig. 6. Risk-Index Results for the Case Study. 

 

Fig. 7. Per-Time Step Collision Results for Vaildating the Risk-Index 
Based AEB Activation Timing for the Case Study. 

Fig. 6 shows the time-varying risk indices calculated by 
normalizing the front and rear relative distances obtained from 
Fig. 5 with their respective RSS values. As described earlier 
in Chapter 4, Section A, the algorithm first satisfies the RSS 
condition as the primary constraint before considering the 
RSSADM. The graphs, arranged in top-left, top-right, bottom-
left, and bottom-right order, respectively display the RSS Risk 
Index and RSSADM Risk Index at the current time, and at 
predicted time steps of 0.3s, 0.6s, and 0.8s. A Risk Index of 1 
or greater indicates a safe range, and the horizontal Risk Index 
Threshold line represents the safety compliance boundary. At 
the current time step and the 0.3s prediction step, both the RSS 
Risk Index and the RSSADM Risk Index satisfy their respective 
safety threshold values. At the 0.6s prediction step, only the 
RSSADM Risk Index satisfied the safety threshold, whereas the 
RSS Risk Index did not. At the 0.8s prediction step, neither 
index satisfied the threshold. Therefore, the Optimal AEB 
Activation Timing Selector determined the 0.3s prediction 
step among the time steps where both the front and rear Risk 

Index values simultaneously meet the safety threshold as the 
activation time for AEB, allowing the greatest safety margin 
for the following vehicle. 

Fig. 7 shows the collision energy results from simulations 
in which AEB was activated at each time step, in order to 
verify the validity of AEB activation timing based on the RSS 
Risk Index and RSSADM Risk Index. TV1 refers to the lead 
vehicle Target 1, and TV3 refers to the following vehicle 
Target 3. At the current time step, AEB is triggered 
immediately upon entering the mitigation phase without 
considering rear-end risk. While the early AEB activation 
successfully avoids a front collision, it results in a rear-end 
collision with TV3, generating a collision energy of 40.3kJ. 
on the other hand, when AEB was activated at the 0.3s 
prediction step as determined by the proposed algorithm, lead 
vehicle safety was ensured while also accounting for the safety 
of the following vehicle. As a result, a collision with TV3 
occurred with an collision energy of 14.2kJ, followed by a 
secondary collision of 5.1kJ, resulting in a total collision 
energy of 19.4kJ. When AEB was activated at the later 
prediction steps of 0.6s and 0.8s, the delayed braking led to 
severe collisions of 167.3kJ and 220.4kJ, respectively. As a 
result, the proposed safety-metric based Optimal AEB 
Activation Timing Selector reduced the collision energy by 
approximately 51.9% compared to the immediate braking 
approach, demonstrating a significant reduction in accident 
severity under the same conditions. 

C. Monte-Carlo Simulation 
To analyze the performance under various scenarios, a 

Monte Carlo simulation approach was employed. A total of 
100 simulations were conducted, with each simulation using 
randomly generated initial conditions as specified in Table 2. 

Fig. 8 presents the results of the Monte Carlo simulation, 
showing the collision rates of the proposed algorithm and the 
conventional approach. The proposed algorithm achieved a 
collision rate of 0.61, which represents a 7.58% reduction 
compared to the conventional method’s rate of 0.66. The black 
error bars on the bars indicate the 95% confidence interval. 
Due to the high variance in the experimental data, the 3 
interval was found to be excessively wide and was thus 
replaced with the 95% confidence interval. 

Fig. 9 shows the average and maximum collision energies 
from 100 Monte Carlo simulations. The proposed algorithm 
reduced the average collision energy to 152.8kJ, compared to 
198.2kJ for the conventional method, a 22.93% reduction. 
Proposed algorithm also reduced the maximum (peak) 
collision energy to 230.1kJ from 267.8kJ, achieving a 14.09% 
decrease. These results demonstrate that optimizing AEB 
activation timing based on front and rear risk indices can 
significantly reduce accident severity. 

TABLE II.  INITIAL CONDITION FOR MONTE-CARLO 

Vehicle DDTO,ini(m) Vini(m/s) Vmax(m/s) 

Ego N(120, 20) N(8.3, 1.4) N(16.7, 1.4) 

Target1 N(80, 20) N(6.9, 1.4) N(13.9, 1.4) 

Target2 N(100, 20) N(8.3, 1.4) N(16.7, 1.4) 

Target3 N(160, 20) N(8.3, 1.4) N(19.4, 1.4) 

Target4 N(70, 20) N(6.9, 1.4) N(16.7, 1.4) 
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Fig. 8. Collision Rate (100 MC, 95% CI) : Proposed vs Conventional. 

 

Fig. 9. Collision Energy (100 MC) : Proposed vs Conventional. 

VI. CONCLUSION 
This study proposes a safety-metric based AEB system 

that considers both lead and following vehicles, aiming to 
minimize rear-end collision risks of autonomous vehicles in a 
multi-agent traffic environment comprising heterogeneous 
agents characterized by varying control software and driving 
policies. By integrating the rule-based RSS with the ADM an 
adaptation of the HDM that reflects the performance 
characteristics of autonomous vehicles the proposed system 
preserves rule-based safety guarantees while enabling 
simultaneous and precise assessment of front and rear risks in 
multi agent traffic environments. The case study and Monte 
Carlo simulation results demonstrate that the proposed Risk-
Index based Optimal AEB Activation Timing Selector 
accurately evaluates both front and rear risks to determine the 
optimal activation timing, significantly reducing collision 
rates and collision energy by up to 51.9% across the case study 
and 100 Monte Carlo trials. This demonstrates the proposed 
algorithm’s effectiveness in improving core autonomous 
driving safety functions and reducing accident damage. In 
future work, the scope of scenarios will be expanded to 
include steering based evasive maneuvers, in order to validate 
the applicability of the proposed risk index. In addition, the 
applicability of the proposed system to real world driving will 
be comprehensively evaluated through Hardware-in-the-Loop 
(HIL) testing. 
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