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Abstract—Monocular distance estimation enables 3D under-
standing from single-camera images, supporting navigation and
safety applications. We present two RetinaNet-based single-
stage models: DistinaNet and DistinaNet-BBoxExt, enhancing the
RetinaNet architecture with distance estimation capabilities via
ExtraHead and BBoxExtension strategies. Benchmarked on the
KITTI dataset, DistinaNet outperforms state-of-the-art object-
specific methods by 44.82% in MAE. Ablation studies show that
adding the distance estimation task does not degrade detection
performance. We also analyze FPN layer contributions, head
architectures, and loss functions. Both models demonstrate strong
generalization to unseen real-world driving scenarios, validated
using data captured from a custom data collection pipeline. Code
is available at https://github.com/jonher16/distinanet for repro-
duction. Index Terms—Distance Estimation, Depth Estimation,
Object Detection, Single-Stage Architecture, Multi-Task Learning

I. INTRODUCTION

Distance estimation determines spatial separation between
objects in a scene. This is a foundation for interpreting
and reconstructing three-dimensional information from two-
dimensional inputs.

Active methods, like Radar and LiDAR, measure distances
using ultrasound or laser emissions [1].

Passive methods are more cost-effective and estimate dis-
tances using camera images and complex algorithms [2]. We
can distinguish between two kinds of passive methods:

Stereo Vision employs two cameras for depth estimation
but suffers increasing errors with distance due to the inverse
proportionality of disparity to depth [3].

Monocular Vision uses a single camera, reducing costs and
enabling integration in systems with size, weight, and power
constraints. It plays a vital role in transportation, enhancing
advanced driver-assistance systems with real-time data [4], and
autonomous UAV navigation, where researchers have achieved
95% accuracy in detecting airborne objects within 700 meters
[5].

Modern approaches leverage deep learning, particularly
Convolutional Neural Networks (CNNs), using annotated
datasets of objects and their distances for improved accuracy
(2], [4]-[15].
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Deep-learning based monocular distance estimation techniques
can be grouped into three categories [16]:

2D Detection + Depth Estimation generates depth maps
from RGB images using encoder-decoder architectures, in-
tegrated with detection [15] or segmentation models [17].
However, it is limited to around 100 meters in outdoor
environments [18].

3D Object Detection creates three-dimensional bboxes
(bounding boxes) around objects but requires additional 3D
bbox annotations, increasing labeling costs [19], [20].

Object-Specific Distance Estimation uses a multi-task strat-
egy, simultaneously predicting object bboxes and distances,
reducing data acquisition costs and complexity [21], [22].

Existing research often introduces models designed for
specific applications of monocular distance estimation without
comparing alternative deep learning techniques and models
used for distance estimation. Many proposed models depend
solely on custom private datasets [2], [10], which obstructs
reproducibility and frequently does not provide accessible
code or enough details for reproduction [2], [4]-[9], [11], [12],
further complicating the replication of results.

This paper presents two single-stage detector-based distance
estimation models trained on the KITTI dataset [23]. Our
models outperform all current SO single-stage models bench-
marked on the KITTI dataset [6], [7], [9], [11], [16], [21].
We propose single-stage detectors due to their faster inference
times compared to multi-stage models, making them suitable
for deployment in real-time applications. The proposed models
are benchmarked against other object-specific state-of-the-art
models, and we provide qualitative results on unseen data.
Additionally, we analyze different techniques for integrating
distance estimation into object detection, conduct ablation
studies on key components, and validate generalization with
real-world data.

We summarize our main contributions as follows:

1) We introduce the first RetinaNet-based single-stage
models for object-specific distance estimation: Disti-
naNet and DistinaNet-BBoxExt, achieving significant
performance gains in KITTI. Code is publicly released.
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Fig. 1. Architecture of DistinaNet.

2) We conduct extensive ablation studies to identify and
integrate the most impactful architectural components
for distance estimation.

3) We validate model generalization on real-world urban
scene dataset created using a custom data collection
pipeline.

II. RELATED WORKS

Object-specific monocular distance estimation models can
be broadly categorized into two architectures: single-stage and
multi-stage, as illustrated in Fig. 2. Single-stage models predict
object locations and distances in one pass, offering speed and
simplicity, whereas multi-stage models use separate modules
for detection and regression, often achieving higher accuracy
at the cost of greater complexity.

Most existing methods adopt multi-stage approaches, where
pre-trained detectors like YOLO are combined with MLPs
or CNNs for distance regression [2], [9]. Some methods
crop detected objects before feature extraction and regression
[10], [11], while others stack multiple modules in compound
pipelines involving detection, alignment, and validation stages
(Compound Architectures) [5], [6], [16].

In contrast, few works adopt single-stage architectures. Dist-
YOLO [7] extends the bbox head to regress distance (BBox
Head Extension technique), reusing detection features.

Despite these advances, single-stage models remain under-
explored. In this work, we introduce two novel RetinaNet-
based single-stage detectors and benchmark their performance
against prior state-of-the-art methods.

Object-Specific
Distance Estimation
[
Multi-stage Single-stage
—

o
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J

Compound
architectures

MLP-based

Cropping-based
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Fig. 2. Taxonomy of the presented related works in object-specific monocular
distance estimation.

III. METHODOLOGY
A. DistinaNet

DistinaNet builds on RetinaNet [24], a well-established de-
tector known for strong performance across diverse tasks [25]—
[28]. Its modular design makes it suitable for analyzing archi-
tectural components relevant to distance estimation. While we
use RetinaNet, the proposed methodology is applicable to any
single- or multi-stage detector.

DistinaNet integrates an extra distance estimation head into
the RetinaNet architecture, as shown in Fig. 1. The input image
is processed through a ResNetl101 backbone, extracting the
last three feature maps at different scales. These maps are
refined by the Feature Pyramid Network (FPN), producing five
outputs: P53 to P7. Each FPN layer generates priors matched to
objects in the image, which are fed into three parallel heads for
bbox regression, classification, and distance estimation. Final
predictions are obtained via thresholding and Non-Maximum
Suppression (NMS).

The bbox regression head output per feature map has the
following shape:

[B,HZ x W; x A,4] @))

where B is the batch size, H; and W; are the height and width
of the feature map, A is the number of anchor boxes per feature
map location, and the 4-channel output per anchor consists of
[tz ty, tw, ts], representing bbox transformation parameters.
The output shape from the distance estimation head is:

[B,HZ x W; x A7 1] (2)

1) Distance Estimation Head Architectures: We design
five distance head architectures, illustrated in Fig. 3. The
baseline BaseConv mirrors the bbox regression head, using
four convolutional layers followed by ReLU, with the final
layer matching the anchor dimensions. DeepConv extends this
with two additional layers to explore deeper feature extrac-
tion. Bottleneck compresses and expands feature dimensions
via a bottleneck block, reducing computation and potential
overfitting. CBAM [29] introduces attention by adding four
CBAM layers after the convolutional stack, enhancing fea-
ture representation. Finally, Dynamic Branching leverages a
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Fig. 3. Distance Head Architectures of DistinaNet.

dynamic gating block [30] to adaptively combine local and
global features based on the input.

2) Distance Estimation Loss Functions: To integrate dis-
tance estimation alongside the Focal Loss [24], we evaluate
several loss functions for regression, analyzing their effect on
model learning and performance.

The LI loss measures absolute error and is our default
baseline. L2 loss penalizes large errors more heavily, making
it more sensitive to outliers. Huber Loss [31], shown in Eq. 3,
combines the robustness of L1 with the precision of L2, using
0 = 0.5. Smooth L1, defined in Eq. 4, is a variation of Huber
with § = 1. Log-Cosh loss [31] (Eq. 5) approximates L2 for
small errors and L1 for large ones, offering stable gradients.

Huber(y,y,0) = 0.5(yi — 9:)? if ly; — il <9
o 0(|y; — yi| — 0.50) otherwise
3)
(yi=9:)° e s
SmoothL1(y,y) = 05575 if [y 'yz\ <9 @
ly; — §i] — 0.50  otherwise

LogCosh(y, i) = Zlog(cosh(yi —4i)) )
i—1

The final training loss combines classification, bbox regres-
sion, and distance losses:

Ly = Les + Lreg + - Lq (6)

where v balances the importance of the distance loss. We ex-
periment with different v values to optimize joint performance
across tasks. .

B. DistinaNet-BBoxExt

In addition to DistinaNet, we used the RetinaNet base
detector to implement the BBox Head Extension technique
and compare its effectiveness. In this approach, instead of
adding an extra head capable of learning specific features
for regressing distance, we extend the bbox prediction vector
to include the distance value as a prediction that shares the
weights between both tasks.

Therefore, using this technique, the output shape of the bbox
regression head becomes:

[B,H; x W; x A, 5] 7)

The 5-channel output per anchor consists of
[tssty, tw, tn, d], representing bbox transformation parameters
with the extension of the distance value, d. The output vector
of the classification head remains the same.

C. Object-Specific Data Collection Pipeline

To evaluate generalization beyond KITTI, we developed
an object-specific data collection pipeline that captures and
annotates urban road scenes with different visual distributions.
We use a ZED X camera (4mm focal length, 19201080
resolution) mounted on a vehicle and a 16GB RAM NVIDIA
Jetson Orin NX for on-device processing.

As shown in Fig. 4, images are passed through YOLOvV9
[32] to generate bboxes, which are annotated with depth
values at each box center. We collected 100 such images to
qualitatively evaluate DistinaNet and DistinaNet-BBoxExt on
previously unseen data. Unlike KITTI’s test set, our custom
data helps assess model robustness under domain shift and
reduces overfitting risks.

i » Jetson Orin AGX
| Camera | | !
; ﬁ: Bzz_:x;entﬂ Ground Truth |
|| DepthMap H— e :
: {1 Data ¢
[ RGBImage i roraned i” BB

Fig. 4. Illustration of our object-specific monocular distance estimation
dataset generation pipeline.

IV. EXPERIMENTS

We conducted experiments on a system with 8 NVIDIA
A100-SXM4 GPUs and dual AMD EPYC 7742 processors.
Models were implemented using Python 3.10.13, PyTorch
1.13.1, and CUDA 11.7, with a fixed seed value of 16 for
reproducibility.

1) Dataset: The KITTI dataset [23] is a widely used bench-
mark for object-specific distance estimation. It includes 7481
labeled and 7518 unlabeled images across nine object classes,
with ’Car’ being the most frequent. Object distances range
from 0 to 150 meters, although most fall within 5-80 meters.
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TABLE I
COMPARISON OF DISTANCE PERFORMANCE METRICS FOR DIFFERENT OBJECT-SPECIFIC MONOCULAR DISTANCE ESTIMATION MODELS

Model MAE () MRE () RMSE () RMSLE ({)
CNN-ROI (Zhu et al. 2019) [6] - 0.251 6.870 0.314
Dist-YOLO (Vajgl et al. 2022)F 3.851 0.237 4.876 0.293
CL-CSEN (Ahishali er al. 2021) [11] - 0.193 4.085 0.2604
YOLOvV7-CBAM (Afshar et al. 2023) [9] 1.700 0.170 - -
Dist-YOLO (Vajgl et al. 2022) [7] 2.570 0.110 - -
Crop-VGG16 (Lai et al. 2020)* [10] 1.786 0.096 2.815 0.129
YOLOvV8-MLP* 1.554 0.078 3.077 0.114
YOLOv8n-DeepSort (Song et al. 2024) [21] 1.249 0.043 1.924 -
RRN (Zhang et al. 2020) [16] 1.169 0.053 1.897 -
DistinaNet-BBoxExt (ours) 0.663 0.030 1.248 0.053
DistinaNet (ours) 0.645 0.030 1.200 0.053

Tested on the KITTT test set. The arrows indicate the preferred trend for each metric. Bold denotes the
best results, and underline denotes the second-best results. * signifies results from our implementation
of the model. T denotes results from the authors’ implementation that we reproduced. Some metrics

were not provided in the referenced papers.

We split the labeled set into 70% training, 10% validation, and
20% test subsets.

Most prior works [7], [9], [11], [15], [16], [21], [33] rely
solely on KITTI for both training and evaluation. Although
some studies [7], [10] test on private datasets to assess
generalization, differences in camera intrinsics often limit fair
comparisons and degrade model performance under domain
change.

2) Evaluation Metrics: We evaluate distance estimation us-
ing standard regression metrics: Mean Absolute Error (MAE),
Root Mean Square Error (RMSE), Mean Relative Error
(MRE), and Root Mean Square Logarithmic Error (RMSLE).
MAE and RMSE measure absolute differences, while MRE
accounts for scale, and RMSLE balances large and small
prediction errors.

For object detection, we use Mean Average Precision
(mAP), computed as the mean of class-wise Average Preci-
sion (AP), which summarizes the precision-recall curve using
recall-weighted precision scores.

A. Benchmark

We benchmark our proposed DistinaNet and DistinaNet-
BBoxExt models against state-of-the-art object-specific dis-
tance estimation methods, including Dist-YOLO [7] (MLP-
based regression from YOLOVY9 outputs) and Crop-VGG16
[10].

Both models are trained for 200 epochs with early stopping
(patience = 20), using a ResNet101 backbone, batch size of
1, learning rate 5 x 107>, Adam optimizer, and Huber Loss
(6 = 0.5). DistinaNet uses the Bottleneck distance head.

As shown in Table I, DistinaNet achieves the best perfor-
mance across all distance metrics, with DistinaNet-BBoxExt
close behind. Compared to the RNN model, DistinaNet im-
proves absolute error by 44.82%, and DistinaNet-BBoxExt
by 43.2%, confirming the effectiveness of single-stage ap-
proaches.

DistinaNet runs at 0.037 seconds per inference, though
inference time is omitted from the table due to lack of
reporting in prior works.

B. Ablation Studies on DistinaNet

We perform ablation studies on DistinaNet to assess the
contribution of key components. Specifically, we evaluate: (1)
the effect of multi-task learning on detection and distance
performance, (2) the role of different FPN layers across
distance ranges, (3) various distance head architectures, and
(4) alternative loss functions.

All ablations use consistent training settings: 200 epochs,
ResNet101 backbone, batch size of 1, learning rate of 1x1072,
and the Adam optimizer. Unless stated otherwise, the distance
head defaults to the BaseConv architecture (shared with the
bbox head), and the loss function is L1.

1) Multi-Task Learning: We evaluate the effect of multi-
task learning (MTL) by comparing the original RetinaNet to
DistinaNet, which adds distance estimation as a secondary
task. Additionally, we test DistinaNet variants with different
distance loss weights () to assess the trade-off between
detection and distance estimation performance.

As shown in Table II, incorporating distance estimation
consistently maintains or improves detection accuracy. With
v = 10, mAP improves by 1.75% over the baseline. For
distance metrics, v = 1 yields the best MAE and MRE, while
v = 0.1 slightly improves RMSE and RMSLE. Very high
weights (e.g., 100) degrade overall performance, as the model
overfocuses on distance at the expense of detection. Moderate
weights (0.1-1) offer the best balance.

TABLE I
EVALUATION METRICS FOR THE DISTINANET MODEL WITH DIFFERENT
DISTANCE LOSS WEIGHTS

Distance Loss Weight (y) mAP (1) MAE () MRE(}) RMSE () RMSLE (})
100 0.774 0.853 0.037 1.821 0.071
10 0.811 0.771 0.034 1.593 0.065
1 0.806 0.678 0.031 1.305 0.056
0.1 0.797 0.682 0.031 1.293 0.050
0.01 0.797 0.792 0.037 1.426 0.057
0 0.797 - - - -

Tested in the KITTI test set. The arrows indicate the preferred trend for each metric. Bold
values mean the best performance.
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2) FPN: We analyze the contribution of each FPN layer
(P3-P7) in DistinaNet by training variants with different layer
combinations: 3-4-5 (high resolution), 5-6-7 (low resolution),
and 3-7 (full range). This helps assess accuracy vs. model
complexity trade-offs.

Fig. 5 shows MAE across distance ranges for each layer
when all FPN layers are active. Higher-resolution layers
(e.g., P3—P4) are more effective at short ranges, while lower-
resolution layers handle broader distances. Layer 3 is the
most consistent, even predicting beyond 60 meters. It does
not contribute to 0-5m predictions due to anchor size. Layer 7
provides no detections, suggesting it can be removed to reduce
computation without loss in performance.

6 |10 nLayer 310 Layer 4
IiLayer SHNLayer 6
Layer 7 y

0 ||I|II‘|H‘|

SQ VDD E R eSS
NI A LI R
TG AR WSS

MAE

Distance Range (meters)
Fig. 5. MAE of FPN Layers at different distance ranges.

Table III summarizes performance across different FPN
layer groups. The 3-4-5 configuration achieves the best over-
all results, showing that a reduced set of higher-resolution
layers can improve accuracy while simplifying the model.
Although Layer 6 contributes some detections, it introduces
notable distance errors, and Layer 7 has no effect. The 5-6-7
group yields low MAE but poor detection, likely due to the
dominance of nearby objects on KITTI. The full 3-7 setup
performs moderately, with Layer 3 as the key contributor.

TABLE III
EVALUATION METRICS FOR THE DISTINANET MODEL WITH DIFFERENT
FPN LAYER CONFIGURATIONS

FPN Layer Group mAP (1) MAE (]) MRE (]) RMSE (]) RMSLE (})
FPN 3-4-5-6-7 0.806 0.678 0.031 1.305 0.056
FPN 3-4-5 0.800 0.663 0.030 1.297 0.050
FPN 5-6-7 0.241 0.416 0.045 0.766 0.069
FPN 3-7 0.497 0.857 0.028 1.556 0.045

Tested in the KITTI test set. The arrows indicate the preferred trend for each metric.
Bold values mean the best score.

3) Distance Head Architecture: To improve distance esti-
mation, we compare several head architectures for the Extra-
Head: BaseConv, DeepConv, CBAM, Bottleneck, and Dynam-
icBranching.

As shown in Table IV, DeepConv slightly improves mAP
over BaseConv, suggesting deeper heads benefit detection.
Bottleneck achieves the best MAE, MRE, and RMSLE, out-
performing BaseConv on distance accuracy. While BaseConv
shows a marginal RMSE advantage (3%), Bottleneck performs
better in RMSLE, indicating improved performance on long-
range predictions. Both Bottleneck and DynamicBranching are
the most efficient, with 0.037s inference time.

Bottleneck’s efficiency can be explained by its use of 1x1
convolutions, which compress and expand features for better
representation, similar to its role in ResNet.

TABLE IV
PERFORMANCE AND INFERENCE TIME COMPARISON OF DIFFERENT
DISTANCE HEAD ARCHITECTURES FOR THE DISTINANET MODEL

Architecture  mAP (1) MAE (]) MRE () RMSE (l) RMSLE (}) MIT (s)
BaseConv 0.806 0.678 0.031 1.305 0.056 0.038
DeepConv 0.817 0.680 0.031 1.337 0.057 0.040
CBAM 0.788 0.817 0.037 1.592 0.065 0.044
Bottleneck 0.803 0.677 0.030 1.346 0.052 0.037
DynamicBr. 0.801 0.740 0.034 1.425 0.061 0.037

Tested in the KITTI test set. Arrows indicate the preferred trend for each performance
metric. Bold values mean the best score.

4) Distance Loss: This experiment compares loss functions
for distance estimation: L1, L2, SmoothL 1, Huber, and Log-
Cosh. As shown in Table V, Huber Loss achieves the best over-
all performance, outperforming L1, L2, SmoothL1, and Log-
Cosh by 4.8%, 9.2%, 3.4%, and 5.5%, respectively. SmoothL.1
ranks second, consistent with its similarity to Huber.

Huber’s blend of L1 and L2 properties offers robustness to
outliers while maintaining sensitivity to small errors, making
it suitable for stable and accurate distance regression.

TABLE V
COMPARISON OF DIFFERENT LOSS FUNCTION PERFORMANCE METRICS ON
THE DISTINANET MODEL

Loss Function mAP (1) MAE (]) MRE (]) RMSE (l) RMSLE (})
L1 0.806 0.678 0.031 1.305 0.056
L2 0.804 0.711 0.034 1.310 0.061
SmoothL1 0.800 0.668 0.031 1.237 0.053
Huber 0.811 0.645 0.030 1.200 0.053
Logcosh 0.808 0.683 0.032 1.656 0.056

Tested in the KITTI test set. Arrows indicate the preferred trend for each
performance metric. Bold values mean the best score.

C. Qualitative Results

Fig. 6 shows qualitative results of DistinaNet and
DistinaNet-BBoxExt on real-world images from our custom
data set. Both models were trained on KITTI and evaluated
on previously unseen data. The predictions are generally
accurate, and we expect further improvements by incorporating
images from cameras with varying intrinsic parameters to
boost generalization.
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Fig. 6. Qualitative results of the presented DistinaNet and DistinaNet-
BBoxExt models in both KITTI test set and collected unseen real-world
images. The values are presented in meters.

V. CONCLUSION

In conclusion, we propose two single-stage object-
specific monocular distance estimation models: DistinaNet
and DistinaNet-BBoxExt. Both achieve SOTA performance
on KITTI and generalize well to real-world data collected
via our custom annotation pipeline. Ablation studies show
that adding distance estimation does not reduce detection
accuracy and that using FPN layers 3—5 improves accuracy
while reducing model size. The Bottleneck head, leveraging
1x1 convolutions, yields the best distance accuracy. Among
loss functions, Huber Loss proves most effective due to its
balance between robustness and sensitivity.
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