979-8-3315-5678-5/25/$31.00 ©2025 IEEE

GNNs-Based 3D Object Detection in Autonomous
Driving: System and Empirical Evaluation

1% Thai Anh Vo
Phenikaa School of Computing
Phenikaa University
Hanoi, Vietnam
anh.vothai @phenikaa-uni.edu.vn

2" Lan Anh Nguyen
Computer Science and Engineering
Chung-Ang University
Seoul, Korea
loglamo@cau.ac.kr

3" Trung Son Doan
Phenikaa School of Computing
Phenikaa University
Hanoi, Vietnam
son.doantrung @phenikaa-uni.edu.vn

4™ Son Hong Ngo
Phenikaa School of Computing
Phenikaa University
Hanoi, Vietnam
son.ngohong @phenikaa-uni.edu.vn

Abstract—Accurate 3D object detection from point clouds is
essential for autonomous driving, yet remains difficult due to
the sparsity and irregularity of Light Detection and Ranging
(LiDAR) data. In this work, we introduce a 3D object detection
framework based on Graph Neural Networks (GNNs) designed
for autonomous driving scenarios. To assess its effectiveness, we
implement PGD, a representative GNN-based model, and com-
pare it with three widely adopted alternatives, such as PointPillar,
CenterPoint, and SECOND. We conduct one of the first cross-
dataset empirical studies of GNN-based detection across the
KITTIL nuScenes, and Waymo benchmarks. Our results show
that the GNN-based approach (e.g., PGD) underperforms in
terms of accuracy and exhibits inefficiencies in training time and
memory usage. These findings highlight the potential of GNNs
and point to promising directions for future improvements in 3D
object detection.

Index Terms—3D object detection, autonomous driving, point
clouds, neural networks, GNNs, PGD, PointNet.

I. INTRODUCTION

Autonomous driving plays a pivotal role in transforming
transportation and improving safety, efficiency, and accessi-
bility for individuals and society as a whole [1]. As the
technology continues to evolve, it has garnered significant
attention from both the industry and the research community,
driven by its potential to revolutionize mobility. A fundamen-
tal aspect of autonomous driving is object detection, which
enables vehicles to perceive and interpret their environment in
real time. Through the detection of objects such as pedestrians,
vehicles, traffic signs, and various obstacles, object detection
systems are essential for ensuring safe navigation and effective
decision-making. Traditionally, 2D images have been widely
used in the object detection component of autonomous driving
systems.

However, conventional 2D imaging fails to capture depth
and structural information [2]-[4], which makes achieving
accurate and reliable object detection difficult. In contrast,
3D point cloud images, generated by systems such as Light
Detection and Ranging (LiDAR), Structured Light Sensors,
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and Time-of-Flight (ToF) Cameras, overcome these limitations
by enhancing depth perception, spatial awareness, and overall
robustness [5]-[7].

However, the inherent characteristics of point cloud images,
such as the irregularity of 3D data, data sparsity, and un-
scalability, present challenges in the model learning process
(e.g., Convolutional Neural Networks (CNNs)) for object
detection [8]-[11]. Graph Neural Networks (GNNs) offer an
effective solution by utilizing graph structures to address these
issues [8], [12], [13] in theory. GNNs are particularly adept
at capturing relationships in unstructured data and provide
improved scalability and performance in processing 3D point
clouds.

This study examines the current landscape and future po-
tential of GNN-based 3D object detection for autonomous
driving. We begin by designing a system architecture tailored
to GNN-based 3D detection in this domain. We then imple-
ment and evaluate its performance using multiple benchmark
datasets, comparing it against established deep learning-based
methods such as PointPillar, CenterPoint, and SECOND, with
PGD representing the GNN-based approach.

Section II outlines the system design for GNN-based 3D
object detection in autonomous driving, along with the datasets
and detection methods employed for empirical evaluation. The
implementation details and experimental analysis are presented
in Section III.

II. METHODOLOGY

We provide an overview of GNNs based 3D object detection
system in II-A, GNNs based 3D object detection in au-
tonomous driving in II-B, datasets, and 3D detection methods
used for empirical evaluation in II-D.

A. Primary components in GNNs-based 3D object detection

The figure 1 propvides primary components of 3D object
detection methods utilizing GNNs. These methods take point
cloud data as input, which can be structured as grids, sets,
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Fig. 1. Primary components in GNNs-based 3D object detection based on GNNs

or individual points. The ‘Graph construction’ component
processes this point cloud representation to generate graphs.
Subsequently, the ‘GNN for detecting’ component applies
various graph-based techniques, such as spectral-based GCNss,
spatial-based GCNs, graph attention networks, and graph
transformers, to analyze the graph representation and predict
object classification and localization. Finally, the detected
objects are displayed within merged bounding boxes.

B. GNNs-based 3D object detection in autonomous driving

Figure 2 illustrates a system for 3D object detection in
autonomous driving, utilizing GNNs.
Vehicles used in autonomous driving, such as cars and trucks,
are equipped with devices like LiDAR that generate point
cloud data. A 3D object detection service processes this point
cloud data as input and applies a 3D object detector to detect
objects, producing outputs with bounding boxes. The detected
3D objects are then forwarded to a decision-making unit
for further processing in autonomous driving tasks. The 3D
object detector consists of primary components as explained in
‘Primary components in GNNs-based 3D object detection’
in II-B.

C. Datasets for autonomous driving

In this section, we provide information of datasets con-
taining 3D objects relevant to autonomous driving, including
pedestrians, various types of vehicles (such as cars, trucks,
buses, motorcycles, and bicycles), and traffic-related elements
(such as traffic signs, signals, road barriers, cones, and lane
markings). Table I presents the key characteristics of the three
datasets used in our experiments.

The table I presents the number of scenes, object classes,
and bounding boxes, along with the scene types and sen-
sor types used. All datasets feature urban driving scenarios.
Moreover, the images are captured using RGB cameras and

LiDAR, with the latter providing data in point cloud format.
Consequently, these datasets are well-suited for 3D object
detection in autonomous driving.

D. 3D object detection methods for comparison

Due to the variety of 3D object detection methods, this
work focuses on several widely used methods for comparison,
including PointPillar, CenterPoint, SECOND, and PGD. Ta-
ble II provides key informations (e.g., region proposal, single
shot, view type, representation, GNNs) of these methods. Key
features of these methods are:

o PointPillar [17]: The core of PointPillar is the Pillar
Feature Encoding (PFE) module. It converts the point
cloud within each pillar into a fixed-size feature vector.
This step involves aggregating point-level features (such
as intensity, height, and coordinates) into a structured
format that can be processed by deep learning networks.
For 2D convolutional backbone, after the point cloud is
transformed into a pillar-based grid, the data is fed into
a 2D convolutional neural network (CNN). The CNN
processes the bird’s-eye view (BEV) of the point cloud,
extracting spatial features and learning to detect objects in
the scene. For object Detection, the processed features are
passed to a detection head that predicts the 3D bounding
boxes of objects (such as cars, pedestrians, cyclists) and
their associated attributes (e.g., orientation, dimensions).
PointPillar directly outputs the detection results in a
single-shot process, making it fast and suitable for real-
time applications.

o CenterPoint [18]: The core idea behind CenterPoint is to
predict the center of each 3D object. The method treats
object detection as a center-based localization problem,
where the model directly regresses the object’s center
position, size, orientation, and other attributes without
requiring region proposals. Besides, the key innovation
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Fig. 2. GNNs based 3D object detection in autonomous driving

TABLE I
3D DATASETS FOR AUTONOMOUS DRIVING (#: INDICATES THE NUMBER OF SOMETHING)
Year | #Scences | #Classes | #3D Boxes | #Scence type #Sensors
KITTY [14] 2012 22 8 200K Urban driving | RGB & LiDAR
nuScences [15] | 2020 1K 23 1.4M Urban driving | RGB & LiDAR
Waymo [16] 2020 1150 Over 12 12M Roadway RGB & LiDAR
TABLE I

3D OBJECT DETECTION METHODS FOR COMPARISON (‘REGION PROPOSAL’ INDICATES WHETHER THE METHOD IS BASED ON REGION PROPOSALS FOR
3D OBJECT DETECTION; ‘SINGLE SHOT’ SPECIFIES WHETHER THE METHOD IS A SINGLE-SHOT 3D OBJECT DETECTION APPROACH; ‘VIEW TYPE’
DESCRIBES THE TYPE OF VIEW USED AS INPUT TO THE METHOD (E.G., BIRD’S-EYE VIEW (BEV) OR RAW POINTS (POINT)); ‘REPRESENTATION’ SHOWS
WHETHER THE INPUT IS PRESENTED AS A GRID, SET, OR POINT FOR FURTHER PROCESSING; ‘GNNS’ INDICATES WHETHER THE METHOD UTILIZES
GRAPH NEURAL NETWORKS (GNNS) FOR DETECTION AND SPECIFIES WHICH GNN IS USED.)

Region proposal | Single shot | View type | Representation GNNs
PointPillar [17] v BEV Grid
CenterPoint [18] v BEV Grid
SECOND [19] v BEV Grid
PGD [20] v Point Point V', PointNet++

in CenterPoint is the center heatmap. For each object,
the model generates a heatmap where the center of the
object is highlighted. This allows the network to focus on
the object center as the key reference point for bounding
box prediction. For 2D convolutional backbone, after
converting the point cloud into a BEV grid, CenterPoint
uses a 2D convolutional neural network (CNN) to extract
features from the BEV representation. These features are
then used to predict the object centers and other attributes
(like orientation, size, and velocity) in a single-shot
manner. For single-Shot detection, similar to PointPillar,
CenterPoint is a single-shot detection method. It directly
predicts 3D bounding boxes and object attributes in one
pass, making it computationally efficient and fast.

SECOND [19]: SECOND begins by converting the raw
LiDAR point cloud into a voxel grid representation. The
point cloud is divided into small 3D voxels, where each
voxel represents a small region in 3D space. This is
done to process the point cloud in a structured man-
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ner, making it suitable for convolutional operations. To
handle the sparsity of the voxelized data, SECOND
uses sparse 3D convolutions instead of regular dense
convolutions. Sparse convolutions focus only on non-
empty voxels, significantly reducing computational cost
while maintaining high accuracy in feature extraction.
SECOND employs a region proposal network (RPN) in
its first stage. After voxelizing the point cloud, the model
generates candidate regions (proposals) where potential
objects might be located. These proposals are based on
the sparse 3D features extracted from the voxel grid. For
object detection, in the second stage, the proposed regions
are refined using fully connected layers to predict the
3D bounding boxes and object attributes (such as class,
orientation, and size).

o PGD [20]: PGD works directly on the raw LiDAR point

cloud and constructs a graph where each point in the
cloud is a node, and the edges between nodes represent
spatial relationships or geometric dependencies between



neighboring points. Similar to other 3D object detection
methods, PGD generates region proposals that represent
potential object locations. The GNN learns to detect ob-
ject centers and regions by examining the graph structure
and the relationships between points. Like PointPillar
and CenterPoint, PGD is a single-shot detection method,
meaning it predicts the 3D bounding boxes and object
attributes (such as size, orientation, and class) in a single
forward pass, making it efficient and suitable for real-time
applications.
In this section, we present the system design for GNN-based
3D object detection in autonomous driving. Additionally, we
outline the datasets and 3D object detection methods selected
for comparison and analysis. In the following section, we
conduct experiments and provide an in-depth analysis of the
datasets and detection methods.

III. EXPERIMENTS AND RESULTS
A. Experimental Setups

The methods PointPillar, CenterPoint, SECOND, and PGD,
discussed in the previous section, are implemented in our
experiments for comparison. We conduct experiments using
the three datasets: KITTI, nuScenes, and Waymo. We perform
training on NVIDIA GTX 1080Ti GPUs with 9.2GB of
memory.

B. Results and Analysis

1) Performance of 3D object detection methods on KITTI
dataset: The KITTI dataset serves as a fundamental bench-
mark for evaluating 3D object detection models, particularly
under moderate-difficulty conditions.

Table 3 shows model performance across three critical
object categories of KITTI: cars, pedestrians, and cyclists,
using the standard metrics of Car@R11, Pedestrian@R11,
and Cyclist@R11. This metric evaluates the model’s ability
to detect cars. The ‘@R11’ likely refers to the recall level
at which precision is measured, typically using an 11-point
interpolation method for calculating Average Precision (AP).
The value represents the AP score for car detection under
moderate difficulty conditions.

The results indicate that SECOND achieves superior per-
formance across all categories, establishing it as a strong
baseline for comparison. PointPillar demonstrates competitive
car detection capabilities but exhibits performance degrada-
tion in pedestrian and cyclist detection scenarios. CenterPoint
maintains moderate performance across all categories, while
the GNNs-based method, PGD, though innovative in its
GNN-based approach, currently achieves lower detection
accuracy than established methods.

2) Performance of 3D object detection on Waymo dataset:
The Waymo Dataset [16] presents a more complex evaluation
environment, featuring multiple object categories and distinct
difficulty levels (e.g., L1 and L2). L1 means Level 1, indicating
objects with more than 5 LiDAR points in their bounding box.
L2 means Level 2, indicating objects with at least 1 LiDAR
point in their bounding box. The levels, Vec_L1, Vec_L2,

Ped_L1, Ped_L2, Cyc_L1, and Cyc_L2, showed in Table 4,
capture model difficulty levels across classes.

The difficulty levels effectively distinguish between detec-
tion challenges, enabling a nuanced understanding of how
each model performs under different conditions. The sepa-
ration of object categories allows for targeted performance
analysis, helping researchers identify specific strengths and
weaknesses in various detection scenarios. The metrics align
with Waymo’s established evaluation standards, ensuring com-
parability with other work using this benchmark.

CenterPoint demonstrates strong performance across most
metrics, particularly for vehicle detection at both difficulty
levels, while PointPillar shows reliable performance in vehicle
detection but variability in pedestrian and cyclist scenarios.
SECOND maintains consistent performance across all cate-
gories, while PGD continues to show the lowest detection
accuracy among compared models, though with potential
for improvement through architectural refinement.

3) Performance of 3D object detection on nuScences
dataset: The nuScenes dataset provides a comprehensive
evaluation framework with its unique set of metrics including
mATE (mean Average Translation Error, the average Euclidean
distance between the predicted and ground-truth object cen-
ters in 3D space), mASE (mean Average Scale Error, this
evaluates the accuracy of the predicted object dimensions),
mAOE (mean Average Orientation Error, this assesses the
accuracy of the predicted object orientation), mAVE (mean
Average Velocity Error, this evaluates the accuracy of the
predicted object velocities), mAAE (mean Average Attribute
Error, this assesses the accuracy of attribute predictions) These
metrics assess various aspects of detection quality, including
localization accuracy, scale estimation, orientation accuracy,
velocity estimation, and attribute classification. The results
in Table 5 demonstrate how different models perform across
these metrics.

PointPillar shows reasonable performance across most met-
rics but lags in orientation and attribute accuracy. CenterPoint
demonstrates improved performance in translation and scale
errors but shows variability in orientation and attribute metrics.
SECOND achieves a good balance across most metrics, while
PGD exhibits the lowest performance among the compared
models.

PGD’s performance limitations on nuScenes can be at-
tributed to several factors. The multi-modal nature of nuScenes
requires sophisticated graph attention mechanisms to effec-
tively model the diverse interactions between vehicles, pedes-
trians, and cyclists in urban environments. PGD’s current
architecture might not yet fully capture these complex relation-
ships, particularly for attribute and velocity predictions. The
model may also struggle with the high degree of occlusion
present in nuScenes scenes, where effective graph message
passing is crucial for inferring occluded object properties.
Additionally, the current implementation might not optimally
balance the trade-off between localization accuracy and com-
putational efficiency, affecting its performance on metrics
like mATE and mASE. The nuScenes evaluation protocol
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TABLE III
ACCURACY ACROSS METHODS ON KITTI DATASET

Model Car@R11(%) | Pedestrial@R11(%) | Cyclist@R11(%)
PointPillar 38.77 29.58 48.60
CenterPoint 59.19 55.74 51.32
SECOND 68.92 53.98 67.15
PGD 18.61 18.90 19.47
TABLE 1V
ACCURACY ACROSS METHODS ON WAYMO DATASET
Model Vec_L1(%) | Vec_L2(%) | Ped_L1(%) | Ped_L2(%) | Cyc_L1(%) | Cyc_L2(%)
PointPillar 70.21/70.32 | 65.35/62.52 | 55.32/45.23 | 55.12/54.90 | 63.12/55.34 60.24/58.23
CenterPoint | 71.90/72.43 | 66.21/63.16 | 72.92/66.28 | 64.32/55.90 | 65.50/54.30 61.40/57.35
SECOND 63.68/57.54 | 64.30/62.21 | 60.49/52.09 | 58.20/52.32 | 59.23/55.21 59.32/56.32
PGD 39.32/30.12 | 32.20/30.32 | 29.30/27.32 | 30.20/28.90 | 31.25/28.20 28.30/26.20
TABLE V
ACCURACY ACROSS METHODS ON NUSCENCE DATASET
Model mATE(%) | mASE(%) | mAOE(%) | mAVE(%) | mAAE(%)
PointPillar 39.32 36.52 5221 39.17 40.60
CenterPoint 54.14 57.84 52.92 52.20 56.10
SECOND 50.87 52.20 53.23 49.90 52.32
PGD 32.23 31.54 30.20 31.25 32.10

appropriately tests model capabilities in complex urban driving
scenarios. The multi-metric approach provides a well-rounded
assessment of detection quality, ensuring models perform well
across all aspects of 3D object detection.

4) Comprehensive comparison: The comprehensive com-
parison across all datasets, shown in Table III-B4, provides
valuable insights into the relative performance of different
models by incorporating multiple metrics mAP (mean Average
Precision: This measures the overall precision of object detec-
tion across different confidence threshold), NDS (NuScenes
Detection Score: This is a comprehensive score that combines
the above metrics into a single value, with mAP weighted more
heavily) alongside practical considerations such as training
time and memory requirements. The combination of perfor-
mance metrics and practical considerations offers a complete
picture of each model’s capabilities and implementation re-
quirements.

In terms of accuracy, as measured by mAP and NDS,
CenterPoint consistently outperforms the other methods.
Contrary to expectations, the GNN-based method PGD
yields the lowest performance across both metrics. This
underperformance can be attributed to the inherent difficulty
of constructing a meaningful graph directly from raw, un-
structured point cloud data. Unlike PGD, rival methods such
as PointPillar, CenterPoint, and SECOND first preprocess
the input into a structured, grid-based representation (e.g.,
pillars or voxels). This critical step enables them to leverage
the formidable feature extraction power of highly optimized
Convolutional Neural Networks (CNNs). PGD’s performance,
in contrast, is fundamentally contingent upon the topological
quality of its graph. If the constructed edges fail to accurately
encode the essential geometric and contextual relationships
between points, the efficacy of the GNN’s message-passing

mechanism is severely compromised, resulting in diminished
detection accuracy, particularly for small, distant, or partially
occluded objects. These results suggest limitations in the
current model design of GNN-based 3D object detection
approaches for autonomous driving, highlighting the need for
future research to enhance their accuracy.

In terms of training time and memory consumption,
PointPillar is the most efficient, requiring only 2.3 hours
and 8.4 GB of memory. In contrast, CenterPoint and
PGD exhibit the longest training durations. Notably, PGD
also consumes the most memory on average. This is likely
due to the intrinsic overhead of a graph-based paradigm.
Unlike voxel-based methods that leverage efficient sparse
convolutions on a reduced set of points, PGD must first
perform a costly neighborhood search to construct a graph
from tens of thousands of raw points. Subsequently, the
GNN'’s message-passing operations across this large, densely
connected graph demand significantly more computational
resources and memory. This is compounded by the substantial
storage required for the graph’s adjacency matrix and per-
node feature representations during training, making it far less
efficient than its grid-based counterparts. These results indicate
that PGD imposes higher computational and memory demands
compared to other methods, underscoring its resource-related
challenges. It needs to be address strongly in future.

IV. CONCLUSION

This study presents a GNN-based 3D object detection
system tailored for autonomous driving. We conduct empirical
evaluations across multiple datasets and detection methods
to assess their accuracy and effectiveness. Our results show
that the GNN-based approach (e.g., PGD) underperforms in
terms of accuracy and exhibits inefficiencies in training time
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TABLE VI
COMPREHENSIVE COMPARISON OF 3D OBJECT DETECTION MODELS

Model Dataset mAP(%) | NDS(%) | Training time (hours) | Training memory (GB)
PointPillar KITTI 70.80 - 1.2 5.5
NuScences 39.26 53.26 23 8.4
‘Waymo 63.20 - 1.1 8.2
CenterPoint KITTI 55.60 - - 8.5
NuScences 56.90 65.27 3.2 8.7
Waymo 65.40 - 3.0 9.2
SECOND KITTI 78.30 - 1.8 5.4
NuScences 50.59 53.20 3.2 8.7
Waymo 62.23 - 1.8 5.4
PGD KITTI 18.33 - 2.2 9.1
nuScences 31.80 42.50 3.1 9.2
Waymo 29.32 - 2.2 9.2

and memory usage. Nonetheless, these findings highlight the
potential of GNNs and point to promising directions for future
improvements in 3D object detection.
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