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Abstract—Cloud-native platforms such as Kubernetes have
transformed modern networking by decomposing applications
into thousands of microservices communicating over heteroge-
neous protocols and dynamic multi-interface topologies. However,
existing telemetry tools fall short in this environment: xFlow-
style solutions omit application and identity context, while
sidecar-based service meshes introduce high overhead and cannot
observe hostNetwork or SR-IOV traffic. We present cnFlow,
a sidecar-free, eBPF-based telemetry framework that provides
low-overhead, context-rich observability for Kubernetes clusters.
cnFlow attaches in-kernel eBPF programs to Traffic Control
ingress/egress hooks on all pod and host interfaces, enabling real-
time packet classification and export via lock-free ring buffers.
In user space, it reconstructs higher-layer transactions, which
are then enriched with Kubernetes metadata (e.g., namespace,
service account, security context) and geolocation. Evaluations
on a multi-protocol testbed show that cnFlow captures L3–L7
traffic (e.g., HTTP, Redis, DNS, ICMP) with 2% CPU overhead
and sub-millisecond latency, outperforming Istio and Kubeshark
in both efficiency and observability coverage.

Index Terms—Cloud-Native Network, Telemetry, eBPF

I. INTRODUCTION

Cloud-native platforms such as Kubernetes have reshaped
modern computing infrastructure. By decomposing monolithic
applications into fine-grained microservices, organizations can
deploy, scale, and manage software with improved agility.
These microservices interact across dynamically instantiated
pods and virtual interfaces, often coordinated through complex
overlay networks. According to a 2025 survey by the Linux
Foundation Networking, more than 73% of organizations have
migrated legacy workloads to cloud-native platforms, and
the cloud-network telemetry market is projected to grow by
15.6% annually through 2035 [1]. This transition has created
a critical need for observability tools capable of addressing
the operational complexity of cloud-native environments.

Kubernetes, the de facto standard for container orchestra-
tion [2], supports dynamic scheduling and scalable microser-
vice deployment. It enables advanced networking configu-
rations through technologies such as Multus [3] and SR-
IOV [4]. While these features offer performance benefits, they
introduce challenges for network observability. Operators must
analyze traffic patterns among ephemeral workloads that span
namespaces, security domains, and heterogeneous interfaces.

* Jaehyun Nam (namjh@dankook.ac.kr) is the corresponding author.

Observability systems must provide semantic context: the
initiating identity, the associated service account and privi-
lege level, the encryption status of communications, and the
correctness of application-layer protocol behavior.

Most existing telemetry frameworks do not meet these re-
quirements. Device-centric solutions such as NetFlow, sFlow,
and IPFIX [5] sample traffic at the network edge and operate
at the network and transport layers. These tools lack visibility
into application-layer semantics and cannot attribute flows to
containerized workloads. Service meshes such as Istio [6]
and Linkerd [7] provide finer-grained insights by injecting
sidecar proxies that inspect L7 traffic. However, they introduce
considerable performance overhead [8], increase deployment
complexity, and cannot observe hostNetwork or SR-IOV traf-
fic. Their functions also duplicate capabilities that could be
implemented more efficiently in lower system layers.

Recent approaches employ extended Berkeley Packet Filter
(eBPF) [9], a safe, programmable in-kernel environment, to
enable lightweight observability. Tools such as Pixie and
Cilium Hubble use eBPF to monitor events and traffic from
the kernel. Many rely on statically defined probes, which
may miss certain execution paths. They typically lack support
for stateful, protocol-aware session reconstruction and are not
tightly integrated with Kubernetes metadata such as service
accounts, namespaces, or node location. These constraints
limit their utility in multi-tenant or regulated environments
that demand end-to-end contextual visibility.

To address the limitations of existing telemetry approaches,
we present cnFlow, a sidecar-free telemetry framework based
on eBPF, designed for production-grade Kubernetes environ-
ments. cnFlow attaches eBPF programs to Traffic Control
(TC) ingress and egress hooks on all pod and host interfaces.
This enables comprehensive visibility into L2 through L4
traffic, including communication generated by hostNetwork
pods, overlay interfaces, and SR-IOV virtual functions. The
framework operates entirely within the kernel without requir-
ing kernel modifications or changes to application logic.

cnFlow consists of three core components: the kernel-
side inspection engine, the user-space correlation engine, and
the centralized enrichment manager. The kernel-side engine
attaches eBPF programs to Traffic Control ingress and egress
hooks on all pod and host interfaces to inspect packets in
real time. It performs protocol classification using signature-
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based heuristics and exports flow-level metadata to user space
through high-throughput, lock-free ring buffers. The user-
space engine receives these flow records and reconstructs
application-layer sessions by maintaining connection state,
tracking TCP sequence numbers, and performing stream re-
assembly. This enables precise extraction of transactions for
protocols such as HTTP, Redis, and DNS. The centralized
enrichment manager aggregates flow data from all nodes
and augments it with control-plane metadata obtained from
the Kubernetes API, including pod identity, namespace, ser-
vice account, security context, and deployment configuration.
When available, node-level geolocation is also integrated. This
component produces enriched, hierarchical telemetry that sup-
ports detailed performance monitoring and policy compliance
analysis across the cluster.

We evaluate cnFlow in a Kubernetes-based testbed with
representative microservices and widely used protocols such
as HTTP/1.1, Redis, DNS, and ICMP. Compared to Istio and
Kubeshark, cnFlow offers broader or equivalent protocol cov-
erage with significantly lower resource overhead. It introduces
sub-millisecond latency and consistently maintains CPU usage
below 2 percent per node, demonstrating a practical balance
between observability depth and operational efficiency.
Contributions. This paper makes the following contributions:

• Identification of key shortcomings in Kubernetes teleme-
try, including limited protocol coverage, insufficient con-
text attribution, and excessive runtime overhead.

• Design and implementation of cnFlow, a sidecar-free
telemetry framework that combines eBPF-based packet
inspection, protocol-aware session reconstruction, and
control-plane metadata integration.

• Experimental evaluation of cnFlow on a Kubernetes
testbed, demonstrating precise L3–L7 flow capture and
low-overhead, context-rich observability across pods,
namespaces, and clusters.

Paper Organization. Section II reviews foundational concepts
and representative prior work. Section III details the system ar-
chitecture and implementation of cnFlow. Section IV presents
our experimental methodology and results. Section V discusses
related and complementary research. Section VI concludes the
paper with final remarks.

II. BACKGROUND AND MOTIVATION

This section outlines the limitations of existing network-
telemetry solutions in cloud-native environments, introduces
eBPF as a foundation for efficient in-kernel monitoring, and
motivates the need for a new framework that addresses current
visibility and scalability challenges.

A. Cloud-Native Telemetry for Network Monitoring

Modern cloud-native applications consist of loosely coupled
microservices that communicate through diverse protocols and
dynamic API interactions [10]. Achieving visibility into these
interactions, for performance monitoring, policy enforcement,
and security diagnostics, requires accurate, real-time telemetry
across the cluster. However, the decentralized and ephemeral
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Fig. 1: Conventional network-traffic collection methods:
(a) xFlow family (NetFlow, sFlow, IPFIX) and (b) service-
mesh sidecar approach.

nature of microservice communication complicates traditional
monitoring approaches, which often lack sufficient granularity
and context to trace interactions across service boundaries.

Two primary approaches dominate existing telemetry sys-
tems. The first is device-centric monitoring (Fig. 1(a)), ex-
emplified by protocols such as sFlow [11], NetFlow [12], and
IPFIX [13]. These tools operate at the network edge, extracting
flow-level data from switches and routers using L3/L4 fields
such as IP addresses, ports, and transport protocols [14].
While they provide scalable, infrastructure-wide visibility, they
lack awareness of application-layer behavior and workload
context [15]. Furthermore, sampling limits temporal accuracy
and prevents session-level flow reconstruction.

The second approach is sidecar-based monitoring (Fig.1(b)),
adopted by service mesh frameworks including Istio [6] and
Linkerd [8]. By injecting Envoy proxies [16] alongside each
pod, these systems can intercept and analyze L7 traffic,
generating detailed service graphs and application-layer per-
formance metrics. However, this design introduces non-trivial
resource overhead due to additional containers, complicates
deployment workflows and maintenance, and fails to capture
traffic from hostNetwork pods or from auxiliary interfaces
created by CNI extensions such as Multus or SR-IOV [17].

B. Extended Berkeley Packet Filter (eBPF)

To address the overhead and limitations of user-space-based
telemetry, recent systems have adopted the Extended Berkeley
Packet Filter (eBPF), an in-kernel virtual machine that enables
safe execution of user-defined programs at runtime [17]. eBPF
programs can be attached dynamically to a variety of kernel
hooks, such as system calls, tracepoints, or Traffic Control
(TC) ingress/egress paths. This flexibility enables event-driven
telemetry with minimal impact on application performance.
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By executing logic directly in kernel space and transferring
event data to user space via high-throughput ring buffers,
eBPF supports low-latency, high-frequency monitoring. These
properties make it well suited to modern containerized systems
that require scalable observability across ephemeral workloads,
high-density nodes, and dynamic topologies [18].

C. Challenges in Cluster-Wide Telemetry and Observability

Despite recent advances, cloud-native observability systems
have evolved. However, they still face several unresolved chal-
lenges in achieving comprehensive, low-overhead visibility.

First, reliance on sidecar proxies incurs non-trivial opera-
tional complexity and computational overhead. In scenarios
involving hostNetwork pods or interfaces provisioned through
Multus and SR-IOV, sidecars are bypassed entirely, resulting in
fragmented visibility and critical blind spots [8]. A telemetry
system must instead capture network activity at the kernel level
without requiring application modifications or sidecar deploy-
ment. Without such coverage, security-critical or performance-
sensitive traffic may go completely unobserved, undermining
the effectiveness of the monitoring infrastructure.

Second, Kubernetes clusters exhibit heterogeneous commu-
nication patterns, involving protocols such as HTTP, DNS,
gRPC, Redis, and ICMP [19]. Extracting meaningful protocol-
specific fields (e.g., HTTP methods or DNS query types)
and aggregating quality-of-service metrics (e.g., latency, jitter,
packet loss) in real time is essential for effective performance
diagnosis and SLA validation [20]. However, existing tools
often rely on fixed sampling or partial instrumentation, limiting
their effectiveness. In the absence of full protocol coverage
and accurate session reconstruction, subtle performance re-
gressions and application misbehaviors may go undetected.

Third, the growing adoption of Kubernetes in regulated
industries has elevated the importance of security and au-
ditability. Network telemetry must be able to associate each
flow with Kubernetes-native context such as ServiceAccount,
SecurityContext, deployment, and node-level geolocation [5].
This level of context is critical for enforcing access policies,
performing forensic analysis, and enabling real-time threat
detection. Yet most telemetry tools fail to integrate deeply
with the Kubernetes control plane, preventing administrators
from gaining comprehensive and trustworthy insights. Without
contextual attribution, even accurate flow metrics provide
limited operational or security value.

These limitations motivate the need for a unified framework
that provides protocol-aware, context-rich telemetry directly
from within the kernel, while scaling to production-grade Ku-
bernetes environments without incurring significant overhead.

III. cnFlow DESIGN

This section presents the architecture and operational work-
flow of cnFlow, which is designed to address the limitations
of network observability in cloud-native environments by
combining kernel-level traffic inspection with context-rich,
hierarchical telemetry analysis.
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Fig. 2: The overall architecture of cnFlow.

A. System Overview

As illustrated in Fig. 2, cnFlow consists of two major
components: the agent and the manager. The agent is deployed
as a DaemonSet on each Kubernetes node and comprises three
subsystems: the kernel-side inspection Engine, the user-side
correlation engine, and the telemetry export engine. The kernel
engine attaches eBPF programs to ingress and egress hooks in
the Linux Traffic Control (TC) subsystem, enabling the real-
time capture and initial parsing of network packets directly
at the kernel level. Parsed metadata is streamed through
high-performance ring buffers to the user space, where the
correlation engine reconstructs session-level flows, maintains
connection state, and decodes application-layer protocols. This
engine supports detailed analysis of protocols such as HTTP,
DNS, and Redis, and derives QoS metrics including latency,
throughput, jitter, and packet loss. The export engine then
transmits the enriched telemetry to the manager.

The manager consists of the telemetry collect Engine, the
contextual enrichment engine, and the central analytics engine.
It receives telemetry data from all agents and combines it with
Kubernetes-native metadata, such as pod name, namespace,
ServiceAccount, SecurityContext, and deployment attributes,
as well as node-level geolocation. The contextual enrichment
engine augments each flow record with this information, while
the central analytics engine performs cluster-wide correlation
and analysis. This integrated processing enables operators to
observe system-wide service interactions, identify anomalous
traffic behavior, and assess policy compliance effectively.

B. Network Telemetry in Traffic Control

To enable comprehensive yet efficient traffic inspection,
cnFlow attaches lightweight, event-driven eBPF programs to
the ingress and egress queueing discipline (qdisc) of each
node’s network interfaces using the Linux Traffic Control
(TC) subsystem (Fig. 3). This approach reliably captures both
container and host traffic directly in kernel space, avoiding
user-space interception and unnecessary packet duplication.
It significantly minimizes context switches and consistently
maintains stable system performance under high traffic loads.

1600



Host extNIC cnFlow Agent

Telemetry Export Engine

Host veth

vNIC

TC(qdisc)

Netfilter

Container NS 

cnFlow Manager
Telemetry

Collect Engine

Kernel-Side Inspection Engine

Commit to 
Shared Buffer

NetfilterExtract
Packet Metadata

Raw
Packets

Base Flow Record Data
5-Tuple Field

Shared 
Buffer

User-Side Correlation Engine

Reconstruct
Transaction

Shared 
Buffer

Read Buffer

Flow State Table
10.1.1.7:4857 10.1.1.8:80 Seq=1

Len=250 100ms

10.1.1.8:80 10.1.1.7:4857 Ack=251 135ms

10.1.1.8:80 10.1.1.7:4857 HTTP 35ms

Semantic

Fig. 3: Packet interception via eBPF at TC ingress/egress layer.

Protocol identification is performed within the kernel using
signature-based classification instead of static port numbers,
which are unreliable in dynamic microservice environments.
Each packet is scanned for protocol-specific signatures, magic
bytes, and header patterns to accurately classify the protocol
regardless of transport-layer configuration. Key fields and
metadata are then extracted and streamed to user space through
high-throughput, lock-free ring buffers.

In user space, the correlation engine reconstructs bidirec-
tional TCP sessions by tracking sequence and acknowledgment
numbers. It handles retransmissions and out-of-order segments
to reassemble complete transactions. This session-aware analy-
sis enables accurate parsing of application-layer protocols and
extraction of metadata such as HTTP methods, DNS queries,
and Redis commands. Packet-level metrics are aggregated
into session-level quality indicators, including latency, jitter,
throughput, and loss, which support SLA monitoring and
anomaly detection. The resulting flow records are forwarded
to the Manager for centralized enrichment and analysis.

C. Hierarchical Flow Telemetry Synthesis

As shown in Fig. 4, the manager aggregates telemetry from
all nodes and synthesizes it into hierarchical observability lay-
ers. At the lowest level, packet metadata such as IP addresses,
ports, payload sizes, and timestamps are collected. These
are enriched with Kubernetes-specific context, including pod
identifiers, namespace, deployment configuration, and security
annotations. At the pod level, cnFlow builds comprehensive
communication profiles that include API endpoints, response
times, error rates, and authorization information, providing vis-
ibility into service-to-service dependencies and enabling early
detection of performance bottlenecks or policy violations.

At the namespace and cluster-wide levels, cnFlow aggre-
gates interactions to uncover macro-level traffic patterns, inter-
namespace dependencies, and compliance violations. It sup-
ports advanced correlation features that allow administrators to
trace complex interactions across namespaces and pinpoint the
root cause of anomalies or unauthorized behaviors. To further
extend observability, cnFlow integrates external sources such
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Fig. 4: Hierarchical telemetry synthesis for cluster-wide insight
and contextual network performance diagnostics.

as geolocation databases and cloud provider APIs. This multi-
dimensional telemetry model is particularly valuable in multi-
tenant or geographically distributed clusters where regulatory
compliance and global traffic analysis are required.

IV. EVALUATION

A. Test Environments

A three-node Kubernetes v1.29.15 cluster was deployed on
virtual machines running Ubuntu 22.04. Each node was provi-
sioned with 4 vCPUs, 8 GB of RAM, and 256 GB of storage
on a single physical machine. Flannel was configured as the
primary Container Network Interface (CNI). For comparative
evaluation, Istio [6] v1.26.2 was deployed in Permissive mode
with Envoy sidecar injection enabled for all application pods.
Kubeshark [21] v52.7.8, a Kubernetes-native traffic analyzer,
was also deployed to facilitate comparative analysis.

B. Hierarchical Telemetry Validation with Contextual Insights

cnFlow captures diverse network traffic and enriches it with
Kubernetes metadata, including namespaces, pod names, ser-
vice accounts, security contexts, and geographic information.
This telemetry provides multi-level observability, enabling pre-
cise correlation of network sessions and improved operational
understanding that existing solutions typically lack.

At the pod level, cnFlow reconstructs request–response in-
teractions, extracting protocol details such as HTTP methods,
API endpoints, and DNS queries (Fig. 5(a-b)). Linking these
transactions with pod-level metadata allows detailed inspection
of individual microservice behavior, which is essential for
debugging and security management.

At the namespace level, cnFlow aggregates traffic to uncover
service interactions and dependencies. It parses Kafka topics
and Redis commands, mapping them to corresponding pods
and services (Fig. 5(c)), thereby clarifying communication
patterns within the namespace and supporting effective op-
erational control.
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(a) Pod-level HTTP request–response timeline

(b) Pod-level DNS query–response timeline

(c) Namespace-level Kafka and Redis transaction statistics

(d) Cluster-wide multi-protocol traffic overview (HTTP/1.1,
HTTP/2, ICMP)

Fig. 5: Protocol-coverage validation across pod, namespace,
and cluster scopes using cnFlow. Subfigures demonstrate that
cnFlow faithfully captures and reconstructs transactions.

At the cluster level, cnFlow consolidates telemetry across
all namespaces, capturing multi-protocol interactions such as
HTTP/2 streams and ICMP requests. By combining geo-
graphic and security metadata, it distinguishes internal, in-
bound, and outbound traffic (Fig. 5(d)) and facilitates anal-
ysis of regional traffic characteristics, latency variations, and
compliance with data sovereignty requirements.

Compared to conventional monitoring solutions that offer
only basic protocol coverage and limited contextual data,
cnFlow leverages an eBPF-based architecture to provide multi-
scope observability. This capability enhances performance
analysis, accelerates fault diagnosis, and strengthens security
and compliance management in Kubernetes environments.

C. Performance Evaluation

We evaluated the performance overhead of cnFlow in terms
of throughput, latency (Fig. 6), and CPU utilization. Through-
put was measured under concurrency levels of 10, 25, 50, and
100. Latency was evaluated as the round-trip time (RTT) for
complete request–response cycles.

For HTTP/1.1 and HTTP/2 workloads (Fig. 6(a–b,f–g)),
cnFlow introduced throughput reductions of 31.2% and 18.7%,
respectively. In comparison, Kubeshark exhibited higher over-

heads of 38.7% and 41.5%, while Istio showed significant
degradation of 84.7% and 84.3%. Latency increased by 60.6%
and 15% under cnFlow, compared to 224.6% and 30.6% for
Kubeshark and 477.7% and 560% for Istio. These results can
be attributed to the fact that cnFlow performs parsing and
metadata extraction entirely in kernel space, whereas Kube-
shark incurs additional user-space copying and TLS inspection
overhead, and Istio introduces heavy sidecar-proxy overhead
and frequent context switching.

Redis traffic (Fig. 6(c,h)) showed an 8.5% throughput
decrease under cnFlow, owing to efficient in-kernel protocol
detection and command parsing. By contrast, Kubeshark and
Istio experienced more substantial reductions of 29.3% and
53.1%, respectively, due to their reliance on resource-intensive
user-space inspection. Redis latency increased by 17% with
cnFlow, whereas Kubeshark and Istio observed increases of
45.8% and 76.1%, respectively.

For DNS traffic (Fig. 6(d,i)), cnFlow reduced overall
throughput by only 14.2%, significantly lower than Kube-
shark’s 27.5% overhead caused by repeated kernel-to-user data
transfers. DNS latency overhead for cnFlow remained modest
at 15%, compared to 31.5% for Kubeshark.

ICMP performance (Fig. 6(e,j)) showed a 16.3% throughput
decrease for cnFlow, resulting from precise per-packet meta-
data capture. Kubeshark exhibited a slightly higher overhead
of 20.3% due to additional user-space event correlation com-
plexity. Latency overhead was minimal for cnFlow at 6.5%,
compared to 15.8% for Kubeshark.

CPU utilization for cnFlow remained low, averaging 1.82%
in user space and 1.57% in system space. Kubeshark consumed
slightly more resources, with 1.93% user and 1.94% system
usage, while Istio exhibited significantly higher consumption
at 5.93% user and 1.55% system. These results demonstrate
the efficiency of cnFlow’s in-kernel telemetry processing ap-
proach, which minimizes overhead while maintaining compre-
hensive observability.

V. RELATED WORK

Network Telemetry and Analytics. Prior work on net-
work telemetry has focused on performance and scalability,
but they often lack the contextual richness required in dy-
namic Kubernetes environments. Akbari et al. [5] proposed
a sustainable telemetry framework for Beyond 5G systems
using tools such as Kepler and Prometheus, but without
integration of workload metadata such as pod identity or
namespace. Similarly, PCANT [15] streamlines deployment
via programmable components but falls short in capturing
control-plane context, limiting its applicability for fine-grained
policy analysis. Compact telemetry formats introduced by
Landau-Feibish et al. [14] enable efficient data handling, yet
lack hierarchical organization and application-layer insights.
In contrast, cnFlow combines low-level packet metrics with
Kubernetes-native metadata to generate enriched, hierarchical
telemetry suitable for detailed operational diagnostics and
multi-tenant policy enforcement.
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Fig. 6: End-to-end throughput (top row) and latency (bottom row) for HTTP/1.1, HTTP/2, Redis, DNS and ICMP.

eBPF-Based Network Observability. eBPF has emerged as
a key enabler for in-kernel observability due to its efficiency
and flexibility. Sauron [18] applies eBPF to 5G/6G networks
for security and performance monitoring but offers limited in-
tegration with container orchestration platforms. eZtunnel [17]
reduces service-mesh overhead by bypassing sidecars with
eBPF, yet omits telemetry synthesis or contextual enrichment.
NetworkShortcut [19] uses eBPF for latency optimization but
does not support session reconstruction or protocol-aware anal-
ysis. cnFlow extends these efforts by combining event-driven
eBPF programs with user-space correlation and Kubernetes-
aware enrichment, offering a multi-dimensional telemetry plat-
form that scales to complex production environments.

VI. CONCLUSION

This paper introduced cnFlow, an eBPF-based observabil-
ity framework tailored for Kubernetes environments. cnFlow
overcomes key limitations of conventional monitoring sys-
tems by delivering protocol-aware telemetry enriched with
Kubernetes-native metadata, including pod identities, names-
paces, service accounts, security contexts, and geographic lo-
cation. Its hierarchical and context-aware design enables fine-
grained visibility across pod, namespace, and cluster scopes,
facilitating precise performance analysis and policy compli-
ance tracking. Through empirical evaluation with diverse pro-
tocols (HTTP/1.1, HTTP/2, Redis, DNS, and ICMP), cnFlow
achieved substantially lower overhead than representative tools
such as Kubeshark and Istio. By combining in-kernel effi-
ciency with user-space correlation and contextual enrichment,
cnFlow provides a scalable and practical observability solution
for production-grade cloud-native infrastructures.
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