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Abstract—CDMA (code division multiple access) is still an
attractive multiple access technique and it has been studied by
many researchers, especially most of the recent works are for
optical (or visible light) communications. In a correlation receiver
of CDMA communication systems based on direct-sequence (DS)
spread spectrum techniques, the higher output level is more
reliable than the lower one, but the information of the output
level is not used in normal decoding and only its sign (+ or −) is
utilized for recovering the information bit. In this paper, a simple
error-correction method using single-parity-check (SPC) codes
and correlation receiver output levels in optical SIK (sequence
inversion keyed) DS-CDMA communications is proposed. Though
the SPC codes are 1-bit error-detecting codes (i.e., they have no
error-correction ability), we show by computer simulations that
the proposed error-correction method can correct some error
bits and finally reduce the bit error rate. A theoretical analysis
of bit error probability after the proposed error correction is
also given.

Index Terms—Optical CDMA, SIK, single-parity-check code,
correlation receiver output level, error correction

I. INTRODUCTION

CDMA (code division multiple access) was one of important
technologies in 3G (third generation) mobile communication
systems [1]. The CDMA techniques still have been studied
by various researchers, especially for optical or visible light
communications [2]–[5]. Spreading codes (or sequences) play
an important role in direct-sequence CDMA (DS-CDMA)
communication systems [6]–[8]. In CDMA communications
with radio waves, binary spreading sequences are bipolar (±1)
codes. On the other hand, in optical CDMA communications,
spreading sequences are unipolar (1 or 0) codes. In the case of
unipolar codes, their cross-correlations depend on the number
of collisions of 1’s between unipolar codes [9]. Thus, the
design concept of unipolar spreading codes for DS-CDMA
is different from that of bipolar codes, and OOC (optical
orthogonal code) codes are well known [9]. As a different
approach for optical CDMA, a sequence inversion keyed (SIK)
system using unipolar codes was proposed [10], [11], where
the conventional bipolar spreading codes can be used under
some conditions.

It is known that spreading codes with some negative
auto-correlations can achieve lower bit error rate (BER) in
asynchronous DS-CDMA communications than the classical

(uncorrelated) spreading codes such as Gold sequences gen-
erated by LFSRs (linear feedback shift registers) [12], [13].
Such spreading codes with negative auto-correlation can be
designed based on chaos theory for some one-dimensional
nonlinear maps [12]–[14]. We designed binary sequences with
negative auto-correlation based on the well-known Bernoulli
and tent maps [15]. Since the Bernoulli map with finite bits
can be realized by linear/nonlinear feedback shift registers
(LFSRs/NFSRs), we proposed LFSR/NFSR-based generators
of binary spreading codes with negative auto-correlation and
revealed that the proposed spreading codes can also reduce
BER in asynchronous DS-CDMA systems compared with the
Gold sequences [15], [16].

In standard DS-CDMA communications, a receiver judges
each information bit based on the correlation receiver (corre-
lator) output. Here, the judgment is only based on the sign
(positive or negative) of the correlator output, that is, the
output level is not used. However, we consider the level
of the correlation receiver output includes some meaningful
information for the judgment. In [17], we proposed error-
correction methods using the correlation receiver output levels
and Hamming codes, and revealed that BER can be reduced
by the proposed methods.

In this paper, as a simpler error-control code, we em-
ploy single-parity-check (SPC) codes which are 1-bit error-
detecting codes, that is, they have no error-correction ability.
We propose a simple error-correction method using SPC
codes and correlation receiver output levels in DS-CDMA
communications, where the Wagner decoding rule [18], [19] is
applied to multiple-access interference (MAI) environments of
DS-CDMA. By computer simulations, the BER characteristics
of asynchronous SIK DS-CDMA communications using the
proposed error-correction method is investigated. Finally, a
theoretical analysis of bit error probability after the proposed
error correction is given under some assumptions. Please note
that the main purpose of this paper is not to achieve lower bit
error probabilities than the conventional error-control codes,
but to confirm that the Wagner decoding rule is also effective
for MAI environments of DS-CDMA by simulations and
theoretical analysis.
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Fig. 1. An example of spreading signal c(k)(t) of Eq.(1) (N = 8).
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Fig. 2. An example of SIK signal s(k)(t) defined by Eq.(3) (N = 8).

II. SIK DS-CDMA COMMUNICATIONS

In this paper, we employ SIK DS-CDMA scheme which
is one of optical CDMA communications [10], [11]. Let
{b(k)j }N−1

j=0 be the k-th user’s unipolar spreading code of even
period N and assume it is balanced, that is, the number of 1’s
is equal to N/2. Define the spreading signal by

c(k)(t) =

N−1�
j=0

b
(k)
j PTc(t− jTc), b

(k)
j ∈ {0, 1}, (1)

where PT (t) is a unit rectangular pulse of duration T defined
by

PT (t) =

�
1 (0 ≤ t ≤ T ),
0 (otherwise), (2)

and Tc is chip duration. An example of spreading signal c(k)(t)
defined by Eq.(1) is shown in Fig.1.

In SIK DS-CDMA communications, the k-th user’s trans-
mitted signal s(k)(t) is written as

s(k)(t) =
∞�

i=−∞

�
d
(k)
i c(k)(t− iTd)

+ (1− d
(k)
i )(1− c(k)(t− iTd))

�
, (3)

where d
(k)
i (∈ {0, 1}) is the k-th user’s unipolar data sequence

and Td is data duration given by Td = NTc. That is, if d(k)i =
1, the spreading signal c(k)(t − iTd) is transmitted, and if
d
(k)
i = 0, the spreading signal 1 − c(k)(t − iTd) (bit-flipped

waveform) is transmitted. An example of SIK signal s(k)(t)
defined by Eq.(3) is shown in Fig.2.

In asynchronous SIK DS-CDMA communications with K
users, the received optical signal r(t) is given by

r(t) =

K�
k=1

s(k)(t− τk) + w(t), (4)

where the amplitude of each transmitted signal is normalized
to 1, τk is the relative time delay (0 ≤ τk < T ), and w(t)
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Fig. 3. Overview of distributions of correlation receiver outputs Z
(k)
i in SIK

DS-CDMA communications.

is channel noise. At the k1-th receiver, the output of the
correlation receiver matched to s(k1)(t) is given by

Z
(k1)
i =

� (i+1)Td

iTd

r(t)(2c(k1)(t)− 1)dt, (5)

=(2d
(k1)
i − 1)

Td

2

+

� (i+1)Td

iTd




K�
k=1
k ̸=k1

s(k)(t− τk)




(2c(k1)(t)− 1)dt

� �� �
MAI

+

� (i+1)Td

iTd

w(t)(2c(k1)(t)− 1)dt, (6)

where the second component of the righthand side in Eq.(6)
is multiple-access interference (MAI) caused by the cross-
correlations between the k1-th spreading code and the others.
The decision at the k1-th receiver is based on

d̂
(k1)
i =

�
1 if Z(k1)

i > 0

0 if Z(k1)
i < 0

, (7)

where d̂
(k1)
i is an estimated value of d(k1)

i . Under the assump-
tion that all spreading sequences {b(k)j }N−1

j=0 (k = 1, 2, · · · ,K)
are balanced, this SIK DS-CDMA communications are basi-
cally equivalent to the conventional bipolar CDMA [10], [11],
[20].
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Figure 3 shows overview of distributions (probability den-
sity functions) of the correlation receiver outputs Z

(k)
i , where

the area corresponding to the bit error probability is indicated.

III. PROPOSED ERROR CORRECTION WITH SPC CODES
AND CORRELATION RECEIVER OUTPUT LEVELS

A. Single-Parity-Check (SPC) Codes

First, we introduce the well-known single-parity-check
(SPC) codes which are one of simplest linear codes [21], [22]
used in this paper. Let x = (x0, x1, · · · , xn−2) (xi ∈ {0, 1},
n ≥ 2) be an (n− 1)-bit information vector. A redundant bit
xn−1 is determined based on the linear equation

x0 + x1 + · · ·+ xn−2 + xn−1 = 0, (8)

where “+” denotes modulo-2 addition (or exclusive-OR). We
can rewrite the above equation as

xn−1 = x0 + x1 + · · ·+ xn−2, (9)

which implies that xn−1 is 0 (or 1) if the number of 1’s in
x is even (or odd). An n-bit codeword to be transmitted is
expressed by u = (x0, x1, · · · , xn−1), which is called single-
parity-check (SPC) codes and denoted by (n, n− 1)-codes. If
one-bit (or odd number of bits) error occurs, we have x0 +
x1 + · · · + xn−2 + xn−1 = 1, that is, the receiver can know
the received word includes an error bit by checking whether
Eq.(8) is satisfied or not (checking xn−1 = 0 or 1 in Eq.(9)).
Thus, the SPC codes can detect 1-bit error in each received
word and they are called 1-bit error-detecting codes.

B. Proposed Error Correction

Noting that the output levels for error bits are relatively
small as in Fig.3, we considered that higher correlation
receiver outputs are more reliable than lower ones. This
coincides with the concept of the Wagner decoding rule [18],
[19]. Based on this idea, we proposed error-correction methods
using the correlation receiver output levels and Hamming
codes, and revealed that the bit error rate (BER) can be
reduced by the proposed methods in the conventional bipolar
DS-CDMA communications [17]. In this paper, we propose
a simpler error-correction method using SPC codes and the
correlation receiver output levels as follows.

Assume the data sequences are coded by (n, n − 1)-SPC
codes and the k-th receiver recovers n bits per block denoted
by (x̂0, x̂1, · · · , x̂n−1). The decoding process is done block
by block based on the following algorithm.

[Proposed Error-Correction Algorithm]
Step-1: The n output values Z

(k)
0 , Z

(k)
1 , · · · , Z

(k)
n−1 of

the k-th correlation receiver for recovering the n bits
(x̂0, x̂1, · · · , x̂n−1) are stored in memory.
Step-2: Check the parity-check equation by calculating

P = x̂0 + x̂1 + · · ·+ x̂n−1.

If P = 0, proceed to next block without any correction. If
P = 1, go to Step-3.

TABLE I
THE NUMBER OF TRANSMITTED BITS PER USER IN THE SIMULATIONS

(n, n− 1)
no. of bits/set

M
no. of sets

S
total no. of bits

(2, 1) 1,000 1,000 1,000,000
(3, 2) 999 1,001 999,999
(4, 3) 1,000 1,000 1,000,000
(5, 4) 1,000 1,000 1,000,000
(6, 5) 996 1,004 999,984
(7, 6) 994 1,006 999,964
(8, 7) 1,000 1,000 1,000,000
(9, 8) 999 1,001 999,999
(10, 9) 1,000 1,000 1,000,000

Step-3: Set m = argmin
m∈{0,1,··· ,n−1}

|Z(k)
m |. Then, the correspond-

ing bit x̂m is corrected (0 → 1 or 1 → 0) and proceed to next
block.

IV. ASYNCHRONOUS SIK DS-CDMA SIMULATION

We perform computer simulations of asynchronous SIK DS-
CDMA communications using the proposed error-correction
method. In the simulations, we use spreading codes with
negative auto-correlation which are generated by nonlinear
feedback shift registers (NFSRs) and satisfy the balanced
condition (the number of 1’s is N/2) for SIK DS-CDMA.
The details of the NFSR-based spreading codes are described
in Appendix A. In order to concentrate our attention on bit
errors caused by MAI, we assume w(t) = 0 in the simulations.
Other simulation conditions are as follows.

• Spreading code length: N = 64
• Number of transmitted bits: M bits / user / set
• Number of active users: K = 20, 30, 40
• The simulations were performed for S sets of different

information bits and random delays.
Here M and S are shown in Table I, where M and S are
almost equal to 1,000 and the total number of transmitted bits
per user is almost equal to 1,000,000. Note that M should be
divided by n (block length).

Tables II–IV show the BER characteristics for K = 20, 30,
40, where BER before correction, BER after correction, and
BER reduction rate for each n are shown. The BER reduction
rate is defined by

BER reduction rate

=
(BER before correction) − (BER after correction)

(BER before correction)
. (10)

As in Tables II–IV, the BER reduction rate for (2, 1)-codes
(n = 2) is smaller than that for (3, 2)-code (n = 3). In (2, 1)-
codes, the coding is done as 1 → 11 and 0 → 00, that is,
it is the same as the coding for 2-bit repetition codes. Thus,
due to the strong correlation between the consecutive two bits,
the BER reduction rate is smaller than expected. So we apply
an interleaving technique to the (2, 1)-codes and the results
are also shown in Tables II–IV. We can see that the BER
reduction rate for the interleaved (2, 1)-codes is larger than that
for (3, 2)-code as expected. Also, Figure 4 shows the graphs

1473



TABLE II
BER CHARACTERISTICS (K = 20)

(n, n− 1)
BER before
correction

BER after
correction

BER reduction
rate

(2, 1) 0.009861 0.004048 0.5895
interleaved 0.009810 0.000806 0.9178

(3, 2) 0.009785 0.001408 0.8561
(4, 3) 0.009867 0.002198 0.7772
(5, 4) 0.009902 0.002684 0.7289
(6, 5) 0.009755 0.003138 0.6783
(7, 6) 0.009822 0.003592 0.6343
(8, 7) 0.009993 0.004100 0.5897
(9, 8) 0.009963 0.004410 0.5574
(10, 9) 0.009948 0.004776 0.5199

TABLE III
BER CHARACTERISTICS (K = 30)

(n, n− 1)
BER before
correction

BER after
correction

BER reduction
rate

(2, 1) 0.028220 0.014236 0.4955
interleaved 0.028170 0.004192 0.8512

(3, 2) 0.027994 0.007328 0.7382
(4, 3) 0.028257 0.010174 0.6399
(5, 4) 0.028455 0.012764 0.5514
(6, 5) 0.028043 0.014282 0.4907
(7, 6) 0.028126 0.015979 0.4319
(8, 7) 0.028227 0.017572 0.3775
(9, 8) 0.028138 0.018658 0.3369
(10, 9) 0.028225 0.019836 0.2972

TABLE IV
BER CHARACTERISTICS (K = 40)

(n, n− 1)
BER before
correction

BER after
correction

BER reduction
rate

(2, 1) 0.049532 0.028758 0.4194
interleaved 0.049156 0.010806 0.7802

(3, 2) 0.049929 0.019102 0.6174
(4, 3) 0.049886 0.024636 0.5062
(5, 4) 0.050096 0.029886 0.4034
(6, 5) 0.049695 0.033443 0.3270
(7, 6) 0.049603 0.036527 0.2636
(8, 7) 0.049958 0.039114 0.2171
(9, 8) 0.049833 0.040770 0.1819
(10, 9) 0.049874 0.042784 0.1422

of the BER characteristics (before/after correction) and Figure
5 shows the graphs of the BER reduction rate versus n, where
the results of the interleaved (2, 1)-codes are used for n = 2.

From these tables and figures, we can find that the BERs are
considerably reduced by the proposed error-correction method,
though the SPC codes themselves have no error-correction
ability. The BER reduction rate decreases as n increases (i.e.,
as the code rate (n− 1)/n decreases).

V. THEORETICAL ANALYSIS

Now we discuss the theoretical bit error probability after
the proposed error correction using (n, n − 1)-SPC codes.
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Let ϕ+(z) and ϕ−(z) be the probability density functions of
correlation receiver outputs Z

(k)
i shown in Fig.3 (a) and (b),

respectively. For simplicity, we assume

ϕ+(z) = ϕ−(−z), (11)

and the bit error probability p is given by

p =

∫ 0

−∞
ϕ+(z)dz =

∫ ∞

0

ϕ−(z)dz. (12)

The conditional probability density function of the output level
(absolute value of the correlation receiver output) of the error
bits is given by

fe(z) =

{
ϕ−(z)/p (z ≥ 0)

0 (z < 0)
. (13)

Similarly, the conditional probability density function of the
output level of the correct (non-error) bits is given by

fc(z) =

{
ϕ+(z)/(1− p) (z ≥ 0)

0 (z < 0)
. (14)

Next, assume a received word of length n includes s error
bits (n−s correct bits) and the n output levels are independent
of one another (i.e., bit errors are memoryless). If s is an odd
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number, one bit, whose output level is minimum among the
n output levels including all error/non-error bits, is corrected.
The error correction is successful if the minimum output level
is any one of the s output levels of the error bits, otherwise
the error correction is wrong.

Thus, we consider the probability that the error correction
is successful. First, the probability density function of the
minimum value of the independent s random variables (output
levels of error bits) according to fe(z) of Eq.(13) is given by
[23]

ge(z) = s(1− Fe(z))
s−1fe(z), (15)

where
Fe(z) =

∫ z

0

fe(z)dz. (16)

Similarly, the probability density function of the minimum
value of the independent n−s output levels (random variables)
according to fc(z) of Eq.(14) is given by

gc(z) = (n− s)(1− Fc(z))
n−s−1fc(z), (17)

where
Fc(z) =

∫ z

0

fc(z)dz. (18)

Next, let Ze and Zc be random variables according to ge(z)
and gc(z), respectively. Obviously, the error correction is
successful when Ze < Zc. Then, consider a random variable
Zd = Zc − Ze, where we also assume Ze and Zc are
independent of each other. The probability density function
of Zd is given by [23]

gd(z) =

∫ ∞

0

gc(x)ge(x− z)dx. (19)

Thus, the probability that the 1-bit error correction is success-
ful for a received word of length n with s error bits, denoted
by q

(n)
s , is obtained by

q(n)s =

{ ∫∞
0

gd(z)dz (s < n)

1 (s = n)
, (20)

where s is an odd number satisfying 1 ≤ s ≤ n. Note that
the 1-bit error correction is always correct when all the n

(odd number) bits are error bits, that is, q(n)n = 1 for any odd
number n ≥ 3.

Let L be the total number of transmitted codewords of
length n for a user, that is, the total number of transmitted bits
is nL per user. Using the bit error probability p, the expected
value of the total number of error bits (before error correction)
is nLp. In the proposed error-correction algorithm, the 1-bit
error correction will be done when s is an odd number in a
received word of length n. The probability that an odd number
2r − 1 (r = 1, 2, · · · ) of error bits occur in a received word
of length n is expressed by

p
(n)
2r−1 =

(
n

2r − 1

)
p2r−1(1− p)n−(2r−1), (21)

and the expected value of the total number of received words
with 2r − 1 error bits is Lp

(n)
2r−1. Thus, Lp

(n)
2r−1q

(n)
2r−1 error

TABLE V
EXPRESSIONS OF THEORETICAL p̂ AND RELATED PARAMETERS AND

FUNCTIONS FOR (2, 1) AND (3, 2) CODES.

(2, 1)-code (3, 2)-code

s 1 1 3

ge(z) fe(z) fe(z) −

gc(z) fc(z) 2(1− Fc(z))fc(z) −

q
(n)
s q

(2)
1 q

(3)
1 1

p
(n)
s 2p(1− p) 3p(1− p)2 p3

p̂ p− 1
2
p
(2)
1 (2q

(2)
1 − 1) p− 1

3
p
(3)
1 (2q

(3)
1 − 1)− 1

3
p3

TABLE VI
BER AFTER ERROR CORRECTION OF SIMULATION RESULTS AND

THEORETICAL ESTIMATES FOR (2, 1) AND (3, 2) CODES.

(n, n− 1) K simulation theoretical estimate (p̂)

20 0.000806 0.000472

(2, 1) 30 0.004192 0.003425

40 0.010806 0.009938

20 0.001408 0.000896

(3, 2) 30 0.007328 0.006349

40 0.019102 0.017730

bits are correctly corrected and the Lp
(n)
2r−1(1 − q

(n)
2r−1) error

bits are incorrectly corrected. After the error correction, the
expected value of the number of error bits is decreased by
Lp

(n)
2r−1(2q

(n)
2r−1 − 1), which gives the total number of error

bits after error correction is calculated by

nLp− L
m∑
r=1

p
(n)
2r−1(2q

(n)
2r−1 − 1), (22)

where n = 2m (m = 1, 2, · · · ) or n = 2m−1 (m = 2, 3, · · · ).
Dividing Eq.(22) by nL, we have the theoretical (estimated)
bit error probability p̂ after error correction, given by

p̂ = p− 1

n

m∑
r=1

p
(n)
2r−1(2q

(n)
2r−1 − 1). (23)

For example, the expressions of p̂ and related parameters
and functions for (2, 1) and (3, 2) codes are shown in Table V.
To confirm the validity of the theoretical analysis, we compare
the simulation results for (2, 1) (interleaved) and (3, 2) codes
given in the previous section and the theoretical estimates
p̂ given in Table V. The comparison is shown in Table VI,
where we assume ϕ+(z) and ϕ−(z) are Gaussian distributions
whose mean and variance are obtained by the simulations.
The integrals for Fc(z), gd(z), and q

(n)
s were calculated by

numerical integration. Though the simulation BERs and the
theoretical estimates are somewhat different (especially for
small K), we see that rough estimates can be obtained by
Eq.(23).
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VI. CONCLUSION

We have proposed a simple error-correction method for
SIK DS-CDMA communications using the correlation receiver
output levels and SPC codes, which is based on the Wag-
ner decoding rule. Simulation results have shown that the
proposed method can reduce BER in spite of the fact that
the SPC codes have no error-correction ability, that is, the
Wagner decoding rule is also effective for SIK DS-CDMA
communications. Thus we can conclude that the correlation
receiver output levels include some meaningful information
for CDMA decoding. It should be noted that the proposed
method can be used in the conventional bipolar DS-CDMA
communications. Finally, the theoretical analysis of bit error
probability after the proposed error correction is discussed and
its validity has been confirmed.

APPENDIX

NFSRs with k stages can generate huge number of
maximum-period sequences of period N = 2k called de Bruijn
sequences and the number of different de Bruijn sequences is
22

k−1−k [24], [25].
Figure 6 shows a generator of spreading codes with negative

auto-correlation based on an NFSR generating a de Bruijn
sequence, where the combinational logic circuit has 3-input
and 1-output. The logic function f(a0, a1, a2) used in this
paper is defined by

f(a0, a1, a2) =

{
1 a0a1a2 ∈ {010, 011, 100, 110},
0 otherwise,

which is designed based on the chaos theory for the Bernoulli
map [15], [16]. Such spreading codes can reduce BER in asyn-
chronous DS-CDMA communications (with bipolar codes)
compared to the original de Bruijn sequences and Gold se-
quences [15]. Note that the spreading codes (including the
original de Bruijn sequences) are completely balanced, that
is, the number of 1’s in a period is exactly equal to N/2
(= 2k−1). This means they are suitable for SIK DS-CDMA
communications [20]

REFERENCES

[1] S. Glisic and B. Vucetic, Spread spectrum CDMA systems for wireless
communications, Artech House, 1997.

[2] Y. Qiu, S. Chen, H.-H. Chen, and W. Meng, “Visible light communica-
tions based on CDMA technology,” IEEE Wireless Communications,
vol.25, no.2, pp.178–185, Apr. 2018.

[3] T. K. Matsushima, S. Yamasaki, K. Ono, and H. Tanaka, “Visible-
Light CDMA Communications Using Inverted Spread Sequences,”
Electronics, vol.11, no.12, 1823, Jun. 2022.

[4] D. Chen, Q. Wang, J. Wang, J. Jin, H. Lu, and L. Feng, “Performance
evaluation of ZCC and OZCZ code set in an integrated VLCP-CDMA
system,” IEEE Photonics Technology Letters, vol.34, no.16, pp.846–
849, Aug. 2022.

[5] B.-C. Yeh, “Establishing a spectral Optical CDMA system involving
the use of two mutually orthogonal states of polarizations using 1-
D two-distinct codes with two-code keying,” IEEE Access, vol.12,
pp.53018–53030, 2024.

[6] M. B. Pursley, “Performance evaluation for phase-coded spread spec-
trum multiple-access communication—part I: System analysis,” IEEE
Trans. Commun., vol.COM-25, no.8, pp.795–799, Aug. 1977.

output

k−1
a   (n)

2
a  (n)

1
a  (n)

0
a  (n)

nonlinear feedback
(combinational logic circuit)

combinational 
logic circuit

Fig. 6. Generator of spreading codes with negative auto-correlation using a
k-stage NFSR and a combinational logic circuit with 3-input/1-output.

[7] D. V. Sarwate and M. B. Pursley, “Crosscorrelation properties of pseu-
dorandom and related sequences,” Proc. IEEE, vol.68, no.3, pp.593–
619, May 1980.

[8] P. Fan and M. Darnell, Sequence design for communications applica-
tions, Research Studies Press, 1996.

[9] F. R. K. Chung, J. A. Salehi, and V. K. Wei, “Optical orthogonal codes:
design, analysis and applications,” IEEE Trans. Information Theory,
vol.35, no.3, pp.595–604, 1989.

[10] M. J. Parham, C. Smythe, and B. L. Weiss, “Code division multiple-
Access techniques for use in optical-fibre local-area networks,” Elec-
tron. & Commun. Eng. J., pp.203–212, 1992.

[11] T. O’Farrell and S. Lockmann, “Performance analysis of an optical
correlator receiver for SIK DS-CDMA communication systems,” Elec-
tronics Letters, vol.30, no.1, pp.63–65, 1994.

[12] R. Rovatti and G. Mazzini, “Interference in DS-CDMA systems
with exponentially vanishing autocorrelations: chaos-based spreading is
optimal,” Electronics Letters, vol.34, no.20, pp.1911–1913, Oct. 1998.

[13] G. Mazzini, R. Rovatti, and G. Setti, “Interference minimization by
auto-correlation shaping in asynchronous DS-CDMA systems: chaos-
based spreading is nearly optimal,” Electronics Letters, vol.35, no.13,
pp.1054–1055, Jun. 1999.

[14] A. Tsuneda, “Design of binary sequences with tunable exponential
autocorrelations and run statistics based on one-dimensional chaotic
maps,” IEEE Trans. Circuits Syst. I, vol.52, no.2, pp.454–462, Feb.
2005.

[15] A. Tsuneda, D. Yoshioka, and T. Hadate, “Design of spreading se-
quences with negative auto-correlations realizable by nonlinear feed-
back shift registers,” in Proc. of the 8th IEEE International Symposium
on Spread Spectrum Techniques and Applications (ISSSTA 2004),
Sydney, Australia, Aug./Sep. 2004, pp.330–334.

[16] A. Tsuneda and Y. Miyazaki, “Binary spreading sequences with
negative auto-correlation based on chaos theory and Gold sequences
for application to asynchronous DS/CDMA communications,” IEICE
Trans. Fundamentals, vol.E93-A, no.11, pp.2307–2311, Nov. 2010.

[17] Y. Tsuruda and A. Tsuneda, “Study on error-correcting using output
level of correlation receivers and Hamming codes in CDMA com-
munications,” In Proc. of the 9th International Conference on ICT
Convergence (ICTC 2018), Jeju Island, Korea, Oct. 2018, pp.234–236.

[18] R. Silverman and M. Balser, “Coding for constant-data-rate systems,”
Trans. IRE Prof. Group Inf. Theory, vol.4, no.4, pp.50–63, Sep. 1954.

[19] J. Snyders and Y. Be’ery, “Maximum likelihood soft decoding of binary
block codes and decoders for the Golay codes,” IEEE Trans. Inform.
Theory, vol.35, no.5, pp.963–975, Sep. 1989.

[20] A. Tsuneda and T. Yoshida, “Performance evaluation of asynchronous
DS/CDMA communications using unipolar codes,” Proc. of 2011 Eu-
ropean Conference on Circuit Theory and Design, Linkoping, Sweden,
Aug. 2011, pp.669–672.

[21] W. W. Peterson and E. J. Weldon Jr. Error-correcting codes (2nd ed.),
The MIT Press, 1972.

[22] B. P. Lathi, Modern digital and analog communication systems (3rd
ed.), Oxford Univ. Press, 1998.

[23] F. M. Dekking, C. Kraaikamp, H. P. Lopuhaä, and L. E. Meester, A
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