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Abstract—For Infrared Image Super-Resolution (IRSR) tech-
nology, maintaining performance while reducing model complex-
ity is critical for a wide range of applications. However, existing
research on lightweight IRSR has been predominantly limited
to modifying model architectures. This study proposes a new
methodology that applies Knowledge Distillation, a representative
model compression technique from supervised learning, to IRSR
models. To this end, we extend the DCKD framework, previously
used for RGB image super-resolution, to the IRSR domain and
introduce new loss functions designed to maximize the preserva-
tion of key structural characteristics in infrared images, namely
edge and spectral(Contourlet-domain) information. Through the
proposed methodology, a lightweight student model trained with
distilled knowledge from a high-performance, complex teacher
model consistently achieved superior performance compared to
the same architecture trained via standard supervised learn-
ing. This study demonstrates that Knowledge Distillation based
methodology is effective for developing lightweight IRSR models
and is expected to contribute to fields where high-efficiency
IRSR is essential, such as real-time military surveillance, disaster
response, and nocturnal reconnaissance.

Index Terms—Infrared Image Super Resolution, Super Reso-
lution, Knowledge Distillation

I. INTRODUCTION

Super-Resolution (SR) is a fundamental task in computer
vision focused on reconstructing high-resolution imagery from
low-resolution counterparts. By restoring fine-grained details
and enhancing visual quality, SR technology has become
essential to diverse range of applications, including video
restoration, modern surveillance systems, satellite imaging,
and medical diagnostics [19]. The field has undergone a signif-
icant paradigm shift. Early methods, such as bicubic interpola-
tion, were limited by their inability to recover high-frequency
components, often yielding blurry and unsatisfactory results.
The advent of deep learning, particularly Convolutional Neural
Networks (CNNs) [2], has largely resolved these issues. The

subsequent introduction of Generative Adversarial Networks
(GANs) [3] in particular dramatically improving restoration
quality. In recent years, advanced architectures such as Swin
Transformer [4] and Diffusion Models [5] continue to push
the boundaries of SR performance.

However, the unique characteristics of infrared images
present distinct challenges for SR algorithms. Compared to
visible-spectrum imagery, infrared images have less structural
details, indistinct edges, and lower contrast [1]. While a num-
ber of Infrared Image Super-Resolution (IRSR) models have
been proposed to address these issues [8]–[10], [12], research
into model lightweighting—a critical factor for deployment
in real-time surveillance and on mobile devices—remains
relatively insufficient. A few studies have attempted to de-
sign lightweight IRSR architectures directly [11], [23], but
a critical research gap exists: there is a lack of advanced
training methodologies specifically designed for compressing
and optimizing these models.

To bridge this gap, we explore Knowledge Distillation
(KD)—an effective model compression paradigm where a
large, high-capacity ”teacher” model transfers its learned
knowledge to a smaller, more efficient ”student” model. This
process enables substantial reductions in computational over-
head while preserving model performance. However, prior
research on KD for SR has predominantly focused on RGB
images, failing to account for the unique statistical properties
of the infrared domain.

This paper proposes a novel KD framework specifically
engineered for IRSR. Our goal is to enable the effective
restoration of high-quality IR images even in computationally
constrained environments. To this end, we introduce two spe-
cialized loss functions—Sobel Loss and Spectral Loss—that
are designed to preserve the edge and spectral information
most critical to infrared image structure. This demonstrates
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that the effectiveness of the KD methodology in IRSR can
be consistently improves solely through the design of loss
functions, without the addition of complex modules.

Our key contributions are as follows:
1) Proposing a new KD-based learning framework for

IRSR that considers the unique characteristics of in-
frared images.

2) Optimize the learning of structural features specific
to infrared images by incorporating Sobel Loss and
Spectral Loss into the distillation process.

3) Experimentally validate a scalable training methodology
for model lightweighting, significantly enhancing the
practical applicability of IRSR models.

Through this study, we aim to establish a robust foundation for
practical, efficient, and deployable IRSR solutions, particularly
suited for critical surveillance applications such as thermal
monitoring, emergency response systems, and nighttime re-
connaissance.

II. RELATED WORKS

A. Infrared Image Super Resolution

In recent years, a variety of IRSR models have been
proposed. Early studies primarily focused on restoring realistic
textures using GANs [7]. For instance, [8] incorporated hetero-
geneous convolution into a WGAN-based framework to effec-
tively model the complex spatial patterns of infrared imagery.
PSRGAN [9] designed its architecture using a knowledge-
distillation-based block structure and trained it within a GAN
framework, achieving high performance even with limited
training data. These studies have substantially contributed to
the perceptual realism of reconstructed IR images.

Following the advent of GANs, newer architectures have
emerged to capture broader and more complex image features.
LKFormer [10], a Transformer-based model, effectively cap-
tures long-range dependencies through self-attention mecha-
nisms utilizing large kernels. Meanwhile, signal processing-
inspired approaches have also gained attention. CRG [12], for
example, leverages the contourlet transform to explicitly model
the directional and geometric structures of infrared images,
significantly improving contour edge restoration.

Alongside performance improvements, research has also
progressed toward lightweight model design for practical
deployment. Lite-MTSR [23] combines a lightweight network
with meta-transfer learning, enabling fast adaptation and real
time super resolution under limited data conditions. Similarly,
LISN [11] leverages efficient operations such as channel split-
ting and shift blocks to strike a balance between restoration
quality and runtime efficiency.

While existing works primarily focus on developing novel
architectures or modifying model structures for performance
gains and model compression, our study takes a different
approach. Instead of altering the architecture, we focus on im-
proving the training methodology itself through KD, offering
an alternative pathway to lightweight IRSR without sacrificing
existing design efficiency.

Fig. 1. Illustration of the DCKD Framework. We use this framework as a
baseline.

B. Knowledge Distillation in Super Resolution

KD is a learning framework that transfers the knowledge
of a large and complex teacher model to a smaller and more
lightweight student model. This enables the student model to
achieve high performance comparable to the teacher while
maintaining computational efficiency, making it particularly
effective for applications requiring real-time processing or
deployment on embedded devices. First introduced by [6] in
the context of image classification tasks, KD has since been
successfully extended to the field of image SR.

Early KD approaches in SR [13] primarily focused on
mimicking the feature maps of CNNs. Subsequent studies have
evolved to deliver more refined and informative knowledge.
For instance, FAKD [14] effectively conveys structural infor-
mation by leveraging feature affinity between representations,
while MiPKD [15] enhances the student’s representational
capacity by integrating multi-scale priors. Moreover, Data
Upcycling KD [16] incorporates data augmentation strategies
into the distillation process, offering improved SR performance
in data-scarce environments.

More recently, DCKD [17] introduced a novel approach that
applies dynamic contrastive regularization in the feature space.
This method is architecture-agnostic and demonstrates robust
performance across various SR models, suggesting a new level
of generalizability in knowledge distillation research.

III. METHOD

A. Preliminaries

DCKD [17] is an advanced knowledge distillation technique
proposed to solve the information loss and generalization
degradation problems caused by the singular focus of existing
methods on reducing feature map differences between teacher
and student models. The core of this method is the introduction
of Contrastive Learning principles to guide the student model
toward learning a more robust and distinct feature space,
rather than merely mimicking the teacher. To this end, DCKD
employs a sophisticated combination of the following four loss
functions. The framework of DCKD is illustrated in Fig. 1

a) Reconstruction Loss: This loss enforces accurate im-
age reconstruction, which is the primary objective in SR
tasks. It typically uses a pixel-wise L1 loss to minimize
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Fig. 2. Illustration of the DCKD Frame work and our losses. The newly proposed loss functions, filled with yellow, are computed between the HR output
of the teacher model(ITHQ) and student model(ISHQ). The right part of figure describe how loss functions work. The Sobel loss is computed based on edge
information extracted from the image, and the spectral loss is computed according to the discrepancy between the spectral fidelity between student and teacher
model outputs.

the difference between the image generated by the student
model(IHQ) and the ground-truth high resolution image(IGT ).

Lrec = ∥IHQ − IGT ∥1 (1)

b) Knowledge Distillation Loss: A fundamental compo-
nent of conventional KD involves guiding the student model
to closely mimic the final outputs of the teacher model.
Let FS(ILQ; θs) and FT (ILQ; θt) denote the outputs of the
student and teacher models for a low-quality input image ILQ,
respectively. Through this process, the student is trained to
align FS with FT , effectively inheriting the teacher’s capability
for generating high-quality outputs.

Lkd = ∥FS(ILQ; θs)− FT (ILQ; θt)∥1 (2)

c) Cross-entropy Loss: This loss function incorporates
pixel-wise distributional information that is typically over-
looked by conventional L1 loss, enabling more refined pixel-
level restoration. To this end, DCKD extracts feature maps
(FT , FS)from the teacher and student output images using
a pre-trained encoder within a Distribution Mapping Module
(DMM). It then calculates the cross-entropy loss between
pixel-wise category distributions (CT , CS), which are gener-
ated from these feature maps via a VQGAN codebook (e). By
adopting pixel-level distributions instead of image-level ones,
the loss function is better aligned with the requirements of
pixel-level image restoration tasks such as SR.

Lce = −
M∑
i=1

CT
i logCS

i (3)

d) Dynamic Contrastive Loss: As the central element
of DCKD, this component guides effective feature learning
through a dynamic contrastive regularization method. In this
process, a ’history model,’ which stores a previous state of

the student model, functions as a Dynamic Negative Sam-
ple Generator, dynamically creating hard negative samples
during training. The contrastive loss, therefore, compels the
student’s features(fAnc) to be attracted to the teacher’s fea-
tures(positive sample, fPos) and repelled from the Dynamic
Lower bound(negative sample,fNeg) generated by the history
model. Through this process, the student model constructs a
more distinct and robust feature space.

Ldcl =
L∑

i=1

λi
∥f i

Anc − f i
Pos∥1∑N

j=1 ∥f i
Anc − f i,j

Neg∥1
(4)

B. Proposed Loss Functions

While DCKD has demonstrated excellent performance in
RGB-based SR tasks, its direct application to IRSR faces two
primary limitations:

• The inherent domain gap between the structural and
textural characteristics of infrared and RGB images.

• The challenge of learning discriminative features with
standard distillation losses alone, given the scarcity of
infrared training data.

To address these limitations, this study employs two auxiliary
loss functions into the existing DCKD framework shown as
Fig. 2 Each loss functions are designed to reflect the unique
properties of infrared images. The proposed loss functions
guide the student model to effectively learn the edge structures
and frequency characteristics—core aspects of IRSR—from
the teacher model.

a) Sobel Loss: The sobel filter is a classic operator
widely used for edge detection in images. This study intro-
duces the Sobel loss to enable the student model to effectively
learn the edge structure restoration capability from the teacher
model. This loss calculates the L1 loss between the edge maps
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TABLE I
THE SPECIFICATIONS OF TEACHER AND STUDENT MODELS USED FOR

EXPERIMENTS.

Pair (x2) Model Role Block #Params

#1 CRG Teacher 18 755K
PSRGAN Student 16 423.5K

#2 LISN (6b) Teacher 6 275K
LISN (4b) Student 4 199K

obtained by applying the Sobel filter to the images generated
by the teacher and student models, respectively. The formula
is as follows:

Lsobel = ∥S(ISHQ)− S(ITHQ)∥1 (5)

S (·) denotes the edge map obtained through Sobel filtering
[24] while ISHQ and ITHQ represent the high-resolution
outputs of the student and teacher models, respectively.
By enforcing alignment in edge representations, this loss
encourages the student model to preserve object boundaries
and structural integrity, which are often vulnerable during the
super-resolution process.

b) Spectral Loss: The spectral loss guides the student
model to mimic the frequency-domain characteristics of the
teacher model. This method was proposed for IRSR in CRG
[12] and is effective at preserving high-frequency details by
distilling knowledge about the unique energy distribution of
infrared images. The loss function is as follows:

Lspec = ∥F(ISHQ)−F(ITHQ)∥1 (6)

F (·) denotes the amplitude spectrum obtained via a 2D
Fourier Transform. By maintaining spectral fidelity, this
loss contributes to more accurate and visually consistent
reconstruction results, particularly in preserving the distinctive
frequency components of infrared imagery.

c) Overall Loss: Finally, the overall loss function in this
study is constructed by combining the core elements of the
original DCKD with the two proposed auxiliary loss functions.
We have replaced the vanilla KD loss (2) of the original DCKD
with the sobel loss (5) and spectral loss (6), which are more
suitable for infrared characteristics. The overall loss function
(7) used for training is as follows:

L = Lrec + Ldcl + Lce + λsobelLsobel + λspecLspec (7)

λsobel and λspec are weighting parameters that control the
importance of each loss. This configuration optimizes the
framework’s performance on the IRSR task by retaining
DCKD’s core contrastive learning strategy while tailoring the
target of the distillation to the key characteristics of infrared
images.

C. Implementation Details

The training procedure of our study largely follows the
original DCKD [17] framework. The Distribution Module for

the distribution matching loss was configured identically to
that of DCKD, based on the VQGAN [18] encoder. The
weighting parameters for the sobel and spectral losses, λsobel

and λspec, were empirically set to 2, which yielded optimal
performance.

For our training data, we used 400 images from the M3FD
[20] infrared image dataset. Input images were center-cropped
into 256×256 patches. For data augmentation, we randomly
applied horizontal flips and rotations of 90°, 180°, and 270°.

All models were optimized using the Adam optimizer(β1 =
0.9, β2 = 0.99). The initial learning rate was set to 1× 10−4

and was progressively decayed by a factor of 0.5 at predefined
epochs. Training was conducted for a total of 150 epochs on
two NVIDIA A100 80GB GPUs with a batch size of 4. The
entire training process took approximately 6 hours.

IV. EXPERIMENTS

A. Experiment Details

This section provides a detailed description of the
experimental setup, including the models, datasets, and
evaluation metrics used.

a) Evaluation Models: To validate the performance
of the methodology proposed in this study, we conducted
evaluations using the following two teacher-student pairings.
The first pairing uses CRG [12] as the teacher model and
PSRGAN [9] as the student model. CRG is a model that
exhibits state-of-the-art IRSR performance, and PSRGAN was
deemed suitable as a student model due to its ability to train
efficiently even with limited data. The second pairing utilizes
the LISN [11] architecture for both the teacher and student
models; in this case, the student model is a lightweight
version (4 blocks) of the full teacher model (6 blocks). The
detailed configurations of the teacher and student models are
presented in Table I.

b) Evaluation Datasets: The proposed method was
evaluated on three benchmark datasets: M3FD, Result-A, and
Result-C. The M3FD [20] dataset is divided into Set5, Set15,
and Set20 based on the number of test images. In this study,
we selected Set20 for our evaluations as it contains a more
diverse range of infrared scenes. Result-A [21] and Result-C
[22] are major benchmarks in the field of IRSR. Although
these two datasets are derived from the same source images,
they are constructed using different fusion strategies, thereby
providing diverse visual characteristics for robust evaluation.

c) Evaluation Metrics: The model’s performance is
quantitatively evaluated using two standard metrics: Peak
Signal-to-Noise Ratio (PSNR) and Structural Similarity In-
dex (SSIM). PSNR measures reconstruction fidelity based on
pixel-wise error, while SSIM assesses structural similarity as
perceived by the human visual system. For both metrics,
higher values indicate better performance. All evaluations
were performed exclusively on the Y channel (luminance
channel) of the YCbCr color space, which is standard way for
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TABLE II
QUANTITATIVE COMPARISON ON THE BENCHMARK DATASETS FOR IRSR. THE BEST PERFORMANCE BETWEEN SCRATCH OR STUDENT MODELS ARE

HIGHLIGHTED ON THE BOLD. THE TEACHER MODEL OF PSRGAN IS CRG.

Scale Role Model Result-A
PSNR / SSIM

Result-C
PSNR / SSIM

Set20
PSNR / SSIM Model Result-A

PSNR / SSIM
Result-C

PSNR / SSIM
Set20

PSNR / SSIM

×2
Teacher

LISN

38.94/0.9422 39.91/0.9532 46.94/0.9906

PSRGAN

38.76/0.9388 39.63/0.9505 49.61/0.9917
Scratch 37.59/0.9325 38.56/0.9451 45.59/0.9876 37.34/0.9211 38.36/0.9344 43.34/0.9676
Student 37.61/0.9327 38.57/0.9453 45.61/0.9876 39.00/0.9432 40.00/0.9541 47.37/0.9910

×4
Teacher 32.96/0.8285 33.63/0.8480 41.50/0.9725 34.60/0.8563 35.19/0.8729 43.59/0.9756
Scratch 32.93/0.8279 33.60/0.8474 40.17/0.9649 34.60/0.8563 35.19/0.8729 43.59/0.9756
Student 32.94/0.8280 33.61/0.8475 40.18/0.9650 34.27/0.8521 34.96/0.8702 41.84/0.9733

evaluating grayscale and infrared images, which are defined
primarily by their luminance information.

B. Results on Infrared Image Super Resolution

To evaluate the effectiveness of the proposed methodology
for IRSR, we compared the performance of each student model
pairing against two baselines: the original teacher model, and
the same student model trained from scratch, without other
training strategy. All evaluations were conducted at ×2 and ×4
scaling factors.

The quantitative evaluation results are summarized in Ta-
ble II. Although the teacher model achieved the highest
performance in most cases, the student model trained with
our proposed method consistently outperformed the scratch
model. Notably, for the LISN-based model pairing, the student
trained with our method achieved approximately 0.01-0.02 dB
higher PSNR scores than the scratch model across all datasets.
For example, on the Result-A dataset at ×2 scale, the scratch
model achieved 37.59 dB, whereas our proposed student model
reached 37.61 dB. Similarly, on the Set20 dataset, the PSNR
improved from 45.59 dB to 45.61 dB.

A more pronounced performance improvement was ob-
served in the CRG–PSRGAN combination. The PSRGAN
student model trained with our method showed substantial
improvements over the scratch-trained counterpart (e.g., a 1.14
dB PSNR improvement on Result-C at ×4) and, in some cases,
even surpassed the teacher model performance, a noteworthy
and uncommon outcome in KD settings. Specifically, at the
×2 scale, the student model achieved PSNR scores of 39.00
dB and 40.00 dB on the Result-A and Result-C datasets,
respectively, outperforming the teacher model by 0.34 dB
and 0.37 dB. These results demonstrate that the proposed
framework can effectively transfer knowledge from a teacher
model to a lightweight IRSR model while maintaining a
simple structure. In particular, achieving performance superior
to the teacher model with the relatively low-capacity PSRGAN
underscores the practicality and scalability of the proposed
method.

Fig. 3 and 4 present a visual comparison of the results from
the CRG-PSRGAN pairing, based on the different training
methodologies. Compared to the scratch model, the student
model trained with the proposed method can be observed to
effectively restore finer textures at the ×2 scale (Fig. 3), while

(a) Input

(b) GT (PSNR) (c) bicubic (42.56)

(d) Scratch (41.97) (e) Ours (46.18)

Fig. 3. Comparison of IRSR performance between different training methods
on an image from Set20 dataset with 2× upscaling.

(a) Input

(b) GT (PSNR) (c) bicubic (31.90)

(d) Scratch (31.77) (e) Ours (34.15)

Fig. 4. Comparison of IRSR performance between different training methods
on an image from Result-C dataset with 4× upscaling.

restoring object contours and edge structures more sharply at
the ×4 scale (Fig. 4).

C. Loss Function Comparison

We conducted an ablation study to analyze the individual
contribution of each proposed loss function. The experi-
ment used the CRG-PSRGAN pairing at ×4 upscaling factor
with M3FD Set20 dataset, where we measured performance
changes by sequentially adding our proposed loss functions
to the baseline DCKD framework. The results, presented in
Table III, clearly show that the two proposed loss functions
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TABLE III
ABLATION STUDY ON THE LOSS FUNCTIONS.

x4 Original + Spectral + Sobel + Spectral
+ Sobel

PSNR 41.73 41.75 41.81 41.84
SSIM 0.9732 0.9731 0.9733 0.9733

contribute to IRSR performance improvement both individu-
ally and in a complementary manner.

Specifically, adding only the spectral loss to the baseline
DCKD framework resulted in a 0.02 dB improvement in
PSNR, while adding only the Sobel loss led to a larger
improvement of 0.08 dB. The Sobel loss, in particular, is
observed to help guide the student model to effectively mimic
the teacher’s boundary representations, owing to its sensitivity
to edge structures.

When both losses were applied simultaneously, a synergistic
effect was observed, achieving the highest performance with
a PSNR improvement of more than 0.1 dB over the base-
line. These results demonstrate that our study’s approach of
simultaneously optimizing for structural features and spectral-
domain fidelity is highly effective for knowledge distillation
for IRSR.

V. CONCLUSION

This study proposed a novel KD methodology that effec-
tively lightweights IRSR models by integrating Sobel Loss and
Spectral Loss into the existing DCKD framework. Through our
experiments, we have demonstrated that the proposed method-
ology can enhance the performance of lightweight IRSR
models more effectively than standard supervised learning
approaches. In particular, the two loss functions, designed to
reflect the unique characteristics of infrared images, played a
critical role in preserving structural information such as edges
and maintaining consistency in the frequency domain during
the super-resolution process. This highlights the potential
for generating high-quality results even with low-complexity
models by enabling a more sophisticated transfer of knowledge
from the teacher model. Future work on more efficient ar-
chitectures, diverse distillation strategies, and advanced multi-
teacher or self-distillation frameworks will be crucial for
bridging the gap between IRSR performance and practical
application, thereby advancing the technological horizons of
the field.
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