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Abstract—The widespread deployment of deep learning models
in sensitive applications has raised increasing concerns about
potential privacy risks. Among them, the Model Inversion Attack
(MIA) stands out as a notable threat, aiming to reconstruct
data samples representative of the model’s private training data.
These risks are particularly concerning in the image domain,
where successful attacks may lead to the recovery of recognizable
faces or sensitive medical images. In response to the growing
research interest in this area, this paper presents a comprehensive
survey of MIAs applied to image data. We propose a systematic
taxonomy that categorizes attacks by threat models, technical
attributes, and core methodologies. Additionally, we discuss
widely used evaluation metrics and outline the landscape of
existing defenses against MIAs.

Index Terms—Model inversion attack, Privacy risk

I. INTRODUCTION

The rapid improvement of deep learning models has un-
locked innovation across various fields. However, this progress
has also introduced a new landscape of privacy threats. Among
them, a Model Inversion Attack (MIA) is gaining attention
as a serious privacy breach technique that reversely traces
the output of a pretrained model to reconstruct sensitive
information from its training data. This attack aims to restore
original or similar samples of the training data by leveraging
publicly available information, such as the model’s prediction
results, posing a significant threat, especially to models trained
on private data. Since its initial conception by Fredrikson et
al. [1, 2], an MIA has steadily evolved and has now reached
a level applicable to a wide range of model architectures and
domains.

Given that MIAs aim to generate data samples that plausibly
belong to the distribution of the train dataset, one might
see a parallel with generative models. However, a crucial
distinction lies in their core objectives. Generative models
aim to create new, realistic data by learning the overall
distribution of the training data. In contrast, the purpose of
a MIA is to exploit this generative capability to restore or
infer specific data that exists within the training dataset. In
other words, while generative models are oriented towards
producing generalized outputs, MIAs are clearly distinguished
by their goal of reproducing specific information that the
model has memorized.
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Fig. 1. A taxonomy of the membership inference attacks reviewed in this
survey. The classification is based on key criteria such as the threat models,
attack strategies, and evaluation metrics

The characteristics of MIAs become clearer when compared
with other privacy attack tasks. For instance, a Membership
Inference Attack only determines whether a specific data
point was included in the training set or not, and a Model
Extraction Attack aims to steal the intellectual property of a
model itself. On the other hand, MIAs focus on compromising
the privacy of the training data by reconstructing the actual
content through the model, which poses a more direct threat.
Furthermore, the threat of MIAs is becoming a reality in
various practical applications that handle sensitive information,
such as healthcare, finance, and face recognition. The risk is
particularly pronounced in the image domain, which deals with
visual data like medical image analysis or face recognition
systems. This paper aims to provide a foundation for future
research by presenting a survey of MIAs in the image domain.

II. BACKGROUND

In this section, we provide the formulation of the attacker’s
objective, and a formal definition of the threat model based
on access levels and information availability.

A. Formulating the Objective of Model Inversion Attack

Reconstructing input data solely from a model’s output is an
inherently ill-posed problem, meaning that multiple different
inputs can produce the similar output. This makes accurately
recovering the original input quite challenging. Therefore, uti-
lizing prior knowledge is essential to successfully performing
the inversion process.

In the following, the model inversion attack is defined under
the setting where the attacker has access to the classifier,
regardless of whether the attacker operates in a white-box
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or black-box setting. The target classifier MT is defined as
follows:

MT (x) : X −→ ∆C−1 (1)

where X denotes the data domain (e.g., images or faces),
and ∆C−1 represents the (C − 1)-dimensional probability
simplex. We assume the target classifier MT is trained on
private dataset Xtrain. The goal of the attacker is to reconstruct
inputs that resemble the training data, using access to the target
model MT and some prior knowledge K. Depending on the
approach, this can be formulated either as learning an approx-
imate inverse function (e.g., training-based methods), or as
directly estimating reconstructed samples through optimization
(e.g., optimization-based methods). Formally, we express the
reconstruction objective as:

Xrecon = M−1
T (MT , K) ≈ Xtrain, (2)

where Xrecon is the reconstructed dataset recovered from
MT and prior knowledge K—which may include statistical
properties of the data distribution, auxiliary datasets, or partial
access to the training data. If the attacker has access to the
parameters and architecture of MT , it is referred to as a
white-box setting; otherwise, it is referred to as a black-box
setting. In Section III, we explore various approaches to model
inversion, depending on the attacker’s level of access to the
target model.

B. Threat Model

In real-world applications, accurately assessing potential
threats requires a well-defined threat model. Since the goal of
an MIA is to infer training data from the pre-trained model’s
output, we assume the attacker does not have access to the
training dataset itself. Depending on the attacker’s access to
the model, we categorize MIAs as follows:

a) White-box vs. Black-box Settings: In the white-box
setting, the attacker has full access to the model’s architec-
ture and parameters except training data. This enables the
attacker to utilize internal representations such as gradients
and intermediate features for reconstructing input training
data. For instance, [2, 3] apply gradient-based optimization to
reconstruct images, starting from random noise. This technique
is conceptually similar to conventional adversarial example
generation algorithms [4, 5], but differs in its objective and
initial condition. Meanwhile, [6] trains a generative model
using intermediate feature outputs to reconstruct high-fidelity
inputs. In contrast, the black-box setting assumes that the
attacker only has query access to the target model’s input-
output pair. This includes typical scenarios like public API-
based attacks, where attackers iteratively query the model with
crafted inputs and observe outputs to infer information about
the training data. Black-box MIAs are significantly constrained
and typically require thousands to tens of thousands of queries
to succeed [7].

b) Soft-labels vs. Hard-labels: Another important aspect
of the threat model is how much output information the
attacker can obtain. The attack strategy of an attacker can
vary significantly depending on the level of access to the
target model1. In the soft-label setting, the attacker has access
to confidence scores or full probability distributions over
the classes. In contrast, the hard-label setting provides only
discrete class predictions, such as the top-1 or top-k labels.
In such cases, the attacker may directly use a one-hot vector
for a known target class, or select a target label using prior
knowledge about the model’s domain (e.g., assuming the
model classifies faces, the attacker may choose a likely identity
to target).

III. MODEL INVERSION ATTACK TYPES

MIAs have been widely explored in various data domains,
most notably in image [2, 8, 9] and text [10, 11]. In this paper,
we focus on MIAs in the image data domain. As previously
described, MIAs attempt to find the inverse mapping that
recovers input data from the model’s output. In general,
existing approaches to finding this inverse can be categorized
into two main types: optimization-based and training-based
methods.

A. Optimization-based Inversion

In optimization-based approaches, the attacker attempt a
point estimation by applying optimization methods in the input
space X (e.g., gradient descent [2, 6, 8], genetic algorithm [8],
zero-order optimization algorithm [12] etc.). That is, for some
distance function d, the attacker’s goal is to find x∗ by
minimizing the following objective function:

x∗ = argmin
x∈X

d (MT (x), yT ) + λR(x) (3)

where R represents regularization terms such as the p-norm,
total variation etc., and yT denotes the target label, which can
be either a hard-label or soft-label. The regularization term
serves to encourage the x∗ to resemble a more plausible or
natural image.

When x∗ is high-dimensional data, the search space be-
comes huge, causing the optimization to fail. To address this
issue, leveraging Generative Adversarial Networks (GANs) is
a promising approach. GAN can produce high-fidelity images
from a relatively low-dimensional latent space compared to
the input space dimension [6]. Given the GAN’s generator
G : Z −→ X and discriminator D : X −→ {0, 1},
the objective function corresponding to (3) is formulated as
follows:

z∗ = argmin
z∈Z

d (MT (G(z)),yT ) + λR(G(z)) (4)

where typically R(z) = −D(G(z)), which serves as a penalty
for unrealistic images. In general, GAN model is trained on a
public training dataset Xpublic, after which a latent vector z∗

1In this paper, we assume that the target model is a classification model
(i.e., classifier) by default, and we use the term “model” to refer to such a
classifier throughout the paper.
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is obtained through an optimization process. The final output
can then be generated as x∗ = G(z∗).

In GAN-based model inversion, the generator G aims to
produce images that the discriminator D classifies as real,
which often results in limited diversity in the reconstructed
samples. Recently, diffusion models have gained attention for
their ability to generate high-quality images while mitigating
such diversity issues. Leveraging these benefits, Li et al. [13]
propose an MIA framework based on Conditional Diffusion
Models (CDMs), which address these limitations of GAN-
based approaches. Their method also follows a two-step
process similar to GAN-based methods for point estimation.
Precisely, these methods leverage a CDM trained on the
(image, label) pairs of the public training dataset Xpublic,
where the label used for conditioning is the pseudo label–
the predicted class label assigned by the target model MT

to the corresponding public image. This conditioning allows
the CDM to synthesize class-consistent samples for inversion.
Afterwards, to obtain a target-specific CDM for the target label
yT of target class, fine-tuning is performed by minimizing the
following loss:

L = ExT∼N (0,I) [Lcls(MT (S(xT ,yT )),yT )] . (5)

where Lcls denotes the classification loss, and S represents
the sampling process of the CDM (denoising process). That is,
fine-tuning is performed on a pre-trained CDM to adapt it more
closely to the distribution of the specified target class. For the
next step, the image reconstruction is carried out initial image
x0 ∈ N (0, I). Then, given a fine-tuned conditional denoiser
ϵθ and a target model MT , we optimize the reconstructed
image x0 with respect to the target label yT by minimizing
the following diffusion prior loss:

Lprior = Eϵ∼N (0,I),ti

[
∥ϵ− ϵθ(xti ,yT , ti)∥22

]
(6)

where xti =
√
αtix0 +

√
1− αtiϵ, αti follows the noise

schedule from the original formulation [14]. The denoising
steps {ti}Ni=1 are annealed from high to low values over
N iterations. In the process of minimizing the Lprior, xi is
iteratively updated and the final xN is the reconstructed image.

Optimization-based methods typically search in the image
domain or latent space, gradually updating the input in a
step-by-step manner to find an image that yields a high
confidence score from the target classifier. In addition to such
methods, some other works take a different approach. For
example, a generator takes the target label as input generates
multiple candidate images, and the the final reconstruction
image is selected as the one that yields the highest confidence
score from the target classifier [15]. These examples demon-
strate that model inversion attacks are not always required to
optimization-based strategies.

The next subsection briefly summarizes training-based in-
version methods, which represents a more general form of
inversion beyond point estimation approaches.

B. Training-based Inversion

In the case of a classifier MT trained on CIFAR-10, the
input dimension is 3 × 32 × 32 = 3, 072 and the output
dimension is 10 classes. For ImageNet, the input dimension is
usually 3 × 224 × 224 = 150, 528 and the output dimension
is 1000 classes. This means that the input is compressed into
a low-dimensional representation as it passes through MT .
Moreover, the architecture of MT generally includes non-
invertible layers such as ReLU, Pooling, and Dropout making
the inverse mapping difficult in practice. Thus, instead of
finding an exact inverse, one can approximate the inverse
mapping of MT using a deep neural network gθ. From this
perspective, attempting MIA by training an inverse mapping
gθ is referred to as a training-based MIA. In addition, the
information required to train gθ consists of the (input-output)
pairs of the target classifier MT , e.g., (image-label), which can
be obtained solely through inference queries to the target clas-
sifier. Therefore, the threat model for training-based MIAs is
commonly assumed to be in the black-box setting [9, 16, 17].

Formally, the deep neural network gθ is trained on public
dataset Xpublic, which has no intersection of the target model’s
private training dataset Xtrain (assume that Xpublic have a
distributionally similar to Xtrain).

For all pairs (xi, yi)
N
i=1 where yi = MT (xi) ∈ [0, 1]N

denotes the model’s output as either hard-label or soft-label
encoding over N classes. The attacker’s goal is to find the
optimal parameters θ∗ by minimizing the following objective:

θ∗ = argmin
θ

∑
x∈Xpublic

1

N
· d(gθ(y), x). (7)

This objective is interpreted as the reconstruction loss, and
additional regularization terms are often used to improve the
quality, naturalness, and fidelity of the reconstructed images.
A classification loss, such as minimizing d (MT (gθ(y)) , y)
can be used instead of the reconstruction loss.

If the architecture of gθ consist only of layers that simply
match input and output dimensions, it cannot effectively learn
the inverse mapping. Nevertheless, Yang et al. [18] designed
gθ using transposed convolution layers for upsampling pur-
poses and attempted inversion on face images. He et al. [16]
constructed their model architecture with convolutional layers
and ReLU activations to perform inversion on relatively simple
datasets such as MNIST and CIFAR-10. However, these ap-
proaches exhibited limitations in terms of image quality, and
inversion remains a challenging problem for more complex
datasets like ImageNet.

IV. EVALUATION OF MIA

In this section, we define the metrics to evaluate the per-
formance of various MIAs. Based on these metrics, we then
analyze and summarize the performance of previous works.

A. Evaluation Metrics

Now, we describe commonly used evaluation metrics to
assess how well the reconstructed input Xrecon aligns with the
original training dataset Xtrain in terms of data distribution. In
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TABLE I
COMPARISON OF MODEL INVERSION ATTACK PERFORMANCE ON FACE RECOGNITION CLASSIFIER

Method Threat Model MT Strategy Dpriv Dpub Acc1 Acc5 FID KNN. Feat. δFace δEval

PPA[19]

White-Box

RN-101

Selection / StyleGAN2[20]

CelebA FFHQ 82.96 95.44 44.04 - - 0.7506 299.73
RN-101 FaceScrub FFHQ 93.95 99.21 46.3 - - 0.7199 119.9
RN-152 CelebA FFHQ 80.61 94.58 40.43 - - 0.7362 312.58
RN-152 FaceScrub FFHQ 92.73 98.91 46.69 - - 0.7163 123.25

PL-GMI[21] evoLVe Optim. / GAN CelebA FaceScrub 55.2 77.12 27.99 1474.22 - - -
evoLVe CelebA FFHQ 95.04 99.01 25.57 1241.41 - - -

IF-GMI[22] RN-18 Optim. / GAN CelebA FaceScrub 97.9 99.6 40.581 - - 0.667 112.915
RN-152 CelebA FFHQ 94.7 99.3 37.461 - - 0.677 315.032

Diff-MI[13] evoLVe Optim. / Diffusion CelebA FFHQ 92.6 98.6 37.73 1204.6 - - -
RN-152 CelebA FFHQ 94.73 99.67 37.82 1140.09 - - -

RLB-MI[23]

Black-Box

evoLVe Optim. / GAN FaceScrub FFHQ 38.5 - - 2204.1 2278.5 - -
evoLVe CelebA FFHQ 43.3 - - 1481.9 1361.8 - -

FHtoT[7] evoLVe Optim.&Surr. / GAN VGGFace2 CelebA 44.22 61.9 - 339.16 306.98 - -
evoLVe VGGFace2 FFHQ 68.71 93.2 - 262.56 237.75 - -

SDM[24] evoLVe Selection / Diffusion CelebA FFHQ 71.23 90.17 35.04 1368.14 - - -

addition to these distribution-based metrics, we also include
attack accuracy as a semantic-level evaluation, which reflects
how likely the reconstructed inputs are to be recognized as
the intended target class by the target model. The evaluation
metrics can be categorized as follows:

• Pixel-Level: Mean Squared Error (MSE), Peak Signal-to-
Noise Ratio (PSNR). These metrics measure low-level,
pixel-wise similarity between the original and recon-
structed images. Lower MSE and higher PSNR values
indicate greater similarity.

• Perceptual-Level: Structural Similarity Index Measure
(SSIM), Learned Perceptual Image Patch Similarity
(LPIPS). These metrics assess perceptual similarity based
on human visual perception. Higher SSIM and lower
LPIPS indicate stronger perceptual similarity.

• Feature-Level: Fréchet Inception Distance (FID), Feature
Distance, K-Nearest Neighbor Distance (KNN .). These
metrics evaluate the similarity between reconstructed and
original images in the feature space of a pretrained model.
FID compares the overall feature distributions; Feature
Distance (Feat.) measures the Euclidean distance (L2

distance) between the reconstructed feature and the class
centroid; and KNN Distance quantifies the proximity
of reconstructed features to training data embeddings.
Note that these metrics also capture semantic information
through high-level features but primarily focus on distri-
butional similarity and smaller values suggest that the
reconstructed inputs lie close to real training examples,
which may indicate potential privacy leakage.

• Semantic-Level: Attack Accuracy. This metric measures
whether the reconstructed input is classified as the target
class by the model. Evaluation is typically based on Top-
1 or Top-5 accuracy, where higher values indicate better
semantic alignment with the target class and a stronger
model inversion attack. (Note that the specific evaluation
networks may differ across methods.)

B. Attack Performance Summary of MIA

The values in TABLE I are aggregated from the result
reported in each individual paper. Due to differences in exper-
imental setups and the evaluation networks used to measure

accuracy, direct comparisons may not entirely reasonable.
Nevertheless, we present results from recent works with
comparable settings for easier comparison. Older works with
significantly lower performance were excluded for a fairer
comparison. For training the MT , the train dataset Dpriv as
follows:

• CelebA [25] : 202,599 Face Images of 10,177 People
• FaceScrub [26] : 100,000 Face Images of 530 People
• VGGFace2 [27] : 3.31M Face Images of 9,131 People
• FFHQ [28] : 70,000 Face Images

δFace and δEval are face-specific evaluation metrics. δFace mea-
sures feature distance using pre-trained FaceNet [29] and δEval
measures the average of the shortest L2 feature distances from
each generated image to any training sample in the target class.

For each threat model, the methods are listed in chronolog-
ical order, with more recent works appearing further down the
list. The target model MT is selected from widely used archi-
tectures, including RN-101 (ResNet-101), RN-152 (ResNet-
152), and evoLVe (Face.evoLVe). In the distributional shift
setting, we adapt the standard configuration where the private
dataset Dpriv is CelebA and the public dataset Dpub is FFHQ.
When a directly comparable setting is not available, we report
configurations where one of the distributions overlaps.‘Optim.’
refers to an optimization-based, while ‘Selection’ denotes the
generator outputs multiple candidate images and selects the
one with the highest confidence score. ‘Surr.’ refers to utilize
a surrogate model to reduce the number of queries required.
Although it is difficult to directly compare the performance
of each model, it can be observed that recent attacks in the
white-box setting achieve considerably high success rates. In
contrast, due to the limited amount of information available
in the black-box setting, attack success rates tend to be
significantly lower compared to white-box setting.

V. DISCUSSION

A. Robustness and Defense Mechanisms

An adversary may attempt a Model Inversion Attack (MIA)
by accessing information obtained from feeding data into the
model, such as intermediate features, gradients, or confidence
scores. If such attacks are unlikely to succeed, the model
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is robust. Differential Privacy (DP) is a representative de-
fense mechanism that mitigates information leakage by adding
noise to the values accessible to the adversary. In addition,
certain obfuscation [30, 31] approaches intentionally impair
prior knowledge, leading to perceptual degradation of the
reconstructed images, and these methods are typically heuris-
tic and lack formal theoretical guarantees. Such strategies,
while enhancing robustness against inversion attacks, naturally
give rise to an inherent trade-off between robustness and
overall model performance. These observations highlight that
defending against model inversion attacks inherently requires
balancing privacy and task performance. Model designers
of sensitive applications, such as medical imaging or face
recognition, must carefully manage this trade-off, and the
limitations of current approaches indicate the need for theory-
driven, scalable defenses that preserve both privacy and task
performance.

B. Inverse model on Face Recognition

Similar to MIA, several studies [32, 33, 34] have inves-
tigated model inversion that reconstructs images from face
recognition model outputs, using face features instead of
confidence score or class labels. These studies indicate that
face features contain a substantial amount of information about
the original face image. From a privacy leakage perspective,
reconstructing the original face image from model outputs
shares the same fundamental concerns as MIAs. Moreover,
the development of inversion techniques from using de-
convolution methods to GANs and more recently to diffusion
models closely parallels the improvement process observed in
MIA research.

C. Other Approaches with Privacy Concerns

While this paper focuses on MIAs, other approaches such
as membership inference attacks and model extraction attacks
also pose significant privacy threats. These attacks differ in
their objectives and methods. Membership inference attacks,
introduced by Shokri et al. [35], aim to determine if a specific
data sample was in the training set, thus threatening data
privacy. For a comprehensive comparison of MIA techniques,
we refer readers to the MIBench framework [36].

Besides, model extraction attacks target the model’s in-
tellectual property. The adversary’s goal is to reconstruct
a functionally equivalent copy of a proprietary model by
querying it multiple times. While MIAs focus on training data
leakage, model extraction compromises the model itself and
may also enable further downstream privacy attacks. Recent
work has demonstrated the feasibility of model extraction
even for image classification models. For instance, Jagielski
et al. [37] show that high-fidelity copies of commercial image
classification APIs can be extracted through adaptive querying,
threatening both intellectual property and privacy.

VI. CONCLUSION

Deep learning is used in many different areas, but because it
strongly depends on data. This has led to frequent application

in fields that handle sensitive information. As a result, privacy
issues have become critical, and attacks such as MIA pose se-
rious threats. To better understand and address these risks, this
survey provides a systematic overview of existing approaches.
We hope it serves as a clear and accessible foundation for new
researchers interested in MIA.
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