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Abstract—Adaptive Modulation and Coding (AMC) is an
essential technology for optimizing performance in modern wire-
less communication systems. In conventional implementations of
AMC, the modulation and coding scheme (MCS) is typically
adjusted based on fixed thresholds. However, the setting of these
thresholds has a significant impact on system performance, and
optimal results may not be achieved. In recent years, AMC meth-
ods that automatically adjust MCS by using machine learning
and AI methods, particularly by the k-Nearest Neighbor (kNN)
are proposed. In this study, we propose a new AMC method
that introduces Q-learning, a kind of reinforcement learning
algorithm in which an agent interacts with the environment and
learns optimal actions based on rewards, to automatically adjust
MCS with the goal of maximizing throughput. Simulation results
show that the proposed method can provide 44%, 49%, and 81%
throughput improvement compared to the kNN method used in
previous researches in EPA3 (Extended Pedestrian A Channel
with speed 3 km/hr), EVA30 (Extended Vehicular A Channel with
speed 30 km/hr), and ETU30 (Extended Typical Urban Channel
with speed 30 km/hr) channels respectively, which validates the
effectiveness of the proposal.

Index Terms—Adaptive modulation and coding (AMC),
throughput maximization, reinforcement learning, Q-learning.

I. INTRODUCTION

In modern wireless communication systems, achieving high
throughput and maintaining link reliability is crucial across
various scenarios, such as mobile, vehicular, and IoT networks.
However, time-varying wireless channels impose significant
challenges, degrading performance and requiring systems to
adapt in real-time to maintain quality of service (QoS).
To effectively address these dynamics, adaptive transmission
strategies have become an essential feature of modern commu-
nication systems.

Among these adaptive strategies, adaptive modulation and
coding (AMC) [1] has been widely adopted to dynamically
select the optimal modulation and coding scheme (MCS)
according to real-time channel conditions. Traditional AMC
implementations highly rely on pre-defined threshold values
which are obtained from simulation or field experimental
results, stored in lookup tables (LUTs). Although LUT-based
methods are computationally efficient, they are sensitive to
incorrect threshold choices, which may result in degraded
system performance. Therefore, in the literature some methods
are proposed to adjust MCS heuristically using some system

signaling (e.g., ACK/NAK) as channel condition indications
[2], [3], [4], but lack theoretical convergence guarantees.

In the literature, numerous studies have explored the use of
machine learning and artificial intelligence (AI) to enhance
AMC. For example, machine learning has been applied in
AMC for satellite communications [5], underwater commu-
nication systems [6], and vehicular networks [7] to support
MCS adaptation. Deep learning-based AMC has been ex-
plored in MIMO systems [8], while reinforcement learning
techniques have been proposed for IoT networks [9] and
5G systems [10]. In addition, autoencoders have emerged as
a promising approach for optimizing the channel coding or
modulation components of AMC [11]. However, most existing
studies primarily focus on QoS-driven adaptation and do not
explicitly aim at maximizing throughput. Autoencoder-based
methods, for instance, can learn nonlinear mappings between
input messages and transmit symbols, to optimize physical-
layer processing. Nevertheless, these methods typically require
extensive offline training under specific channel conditions and
may suffer from limited generalization when channel statistics
change.

In this paper, we propose a novel AMC method based on
Q-learning, a model-free reinforcement learning algorithm,
which enables an agent to interact with the wireless envi-
ronment and autonomously learn an optimal MCS selection
policy. Our approach directly targets throughput maximization,
rather than merely satisfying QoS constraints. Distinct from
existing works, our method integrates a reinforcement learning
objective designed to maximize long-term throughput while
maintaining limited computational complexity.

The main benefit of employing a machine learning ap-
proach, such as Q-learning, is its ability to automatically adapt
to dynamic channel conditions without relying on manually
tuned thresholds. Traditional LUT-based or heuristic AMC
methods often suffer from performance degradation when
pre-defined thresholds are mismatched with the actual wire-
less environment. In contrast, the machine learning approach
can learn optimal decision policies directly from interactions
with the environment, achieving better generalization across
different channel models. Moreover, although the proposed
Q-learning method costs computational resources during the
training phase, once the MCS selection policy is trained and
deployed, it only requires a constant-time table lookup, making
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it both adaptive and computationally efficient for real-time
AMC operations.

The key contributions of this paper are as follows:
• We propose a new AMC method based on model-

free Q-learning, which directly maximizes long-term
throughput under time-varying wireless channels. un-
like autoencoder-based AMC, the proposed Q-learning
method does not require altering the transceiver structure
and still achieves significant throughput gains.

• The proposed method achieves low complexity during
policy deployment and only requires constant-time Q-
table lookup. In contrast, benchmark kNN-based meth-
ods incur significant runtime complexity due to distance
computations over training data.

• Extensive simulations under 3GPP channel models
(EPA3, EVA30, and ETU30) confirm that our method
outperforms benchmark kNN-based AMC by at least 40%
improvement in throughput.

The remainder of this paper is organized as follows. Sec. II
presents the system model and problem formulation. Sec. III
describes the proposed Q-learning-based AMC algorithm.
Sec. IV provides the simulation setup and performance evalu-
ation. Finally, Sec. V concludes the paper and discusses future
directions.

II. SYSTEM DESCRIPTION AND STUDY PROBLEM

In this study, we investigate an AMC mechanism in an end-
to-end (E2E) wireless communication system, as illustrated
in Fig. 1. The system begins by estimating the instantaneous
channel condition, which serves as input to the AMC module
for selecting the most suitable MCS. Once the optimal MCS
is determined, the transmitter encodes and modulates the
information accordingly. Since the selected MCS is known to
both transmitter and receiver via control channel, the receiver
can demodulate and decode the received signal using the
appropriate settings.

In existing wireless systems, AMC is typically implemented
using an LUT containing fixed MCS switching thresholds,
which are obtained by simulations or experiments. However,
the conventional methods using fixed thresholds may suffer
from performance degradation if the thresholds are not ac-
curately determined under appropriate channel assumptions.
In Fig. 2 we show an example to illustrate the problem
of performance degradation due to improper thresholds. In
Fig. 2, the red solid curve shows the throughput due to
optimal MCS switching thresholds which are obtained by
exhaustively measuring the throughputs of all available MCSs,
while the blue dashed curve shows the throughput due to
improper thresholds, which are obtained by offseting each
optimal threshold by several dB, to show how threshold values
affect the system throughput. From the results shown in Fig. 2,
it can be easily seen that the throughput loss is due to the
improper threshold settings.

In this work, the MCS set is defined as a discrete set of
16 MCSs, denoted by S𝑚𝑚 = {MCS0,MCS1, · · · ,MCS15}.
Each MCS corresponds to an unique pair of modulation
format (BPSK, QPSK, 16QAM, or 64QAM, as summarized

Fig. 1: Block diagram of wireless communication system.

Fig. 2: Performance degradation due to improper MCS thresh-
old.

in Table I) and coding rate. These MCSs are designed to with
a range of spectral efficiencies (SEs) similar to 3GPP physical
downlink shared channel (PDSCH) settings, which span from
0.2344 to 5.5547 bits/s/Hz (Table 5.1.3.1-1 in [15])), ensuring
compatibility with practical communication systems. The full
mapping between MCS index, modulation scheme, coding
rate, and spectral efficiency is detailed in Table II.

We formulate the AMC optimization as a discrete-time
decision-making problem, where the objective is to maximize
system throughput by optimal selection of MCS under varying
channel conditions. We adopt Q-learning [12], which is a
model-free reinforcement learning algorithm, to learn a policy
that maps observed channel states to optimal MCS selections.
Q-learning is particularly suitable in this problem as it does
not require prior knowledge of the channel model, and it can
progressively improve its performance over time through in-
teractions with the environment. Furthermore, by focusing on
throughput maximization as the primary reward, the proposed
approach aligns well with the performance goals of future
wireless communication systems, where data rate is often the
critical metric of interest.

III. PROPOSED METHOD

In this study, we focus on proposing an AMC method
which can maximize system throughput by selecting optimal
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Fig. 3: Block diagram of Q-learning.

Fig. 4: Flowchart of Q-learning algorithm.

MCSs. For this purpose, we adopt offline Q-learning, which
is one kind of reinforcement learning algorithm and suitable
for discrete optimization problems, for our algorithm design.
The block diagram of Q-learning for the problem in this study
is shown in Fig. 3.

As shown in Fig. 3, the mechanism of Q-learning consists
of two main elements: agent and environment. The agent
selects MCS according to its policy, and the wireless system
interacts with environment, i.e., wireless channel in this study,
by transmitting signals using selected MCS. The resultant
throughput is evaluated in reward function, which is used to
update the policy of agent. The workflow of the Q-learning,
which is the ”Reinforcement Learning Algorithm” part in
Fig. 3, is shown in Fig. 4. The learning process is terminated
when current epoch count 𝑙𝑙 reaches its maximum limit 𝑙𝑙max.

After offline learning is finished, the trained policy is
equipped in the wireless system, and the AMC is operated

to select MCS based on the trained policy. Compared to the
existing AMC methods, the proposed method can maximize
system throughput in a more effective way.

If the action of agent 𝐴𝐴𝑡𝑡 is decided, the next state 𝑆𝑆𝑡𝑡+1
and state-action quality function 𝑄𝑄 are updated. Then the
agent under state 𝑆𝑆𝑡𝑡 selects action 𝐴𝐴𝑡𝑡 , obtains reward 𝑅𝑅𝑡𝑡+1,
and transfers to state 𝑆𝑆𝑡𝑡+1. The update of the 𝑄𝑄 function is
expressed as follows,

𝑄𝑄(𝑆𝑆𝑡𝑡 , 𝐴𝐴𝑡𝑡 ) ← (1 − 𝛼𝛼)𝑄𝑄(𝑆𝑆𝑡𝑡 , 𝐴𝐴𝑡𝑡 ) (1)

+ 𝛼𝛼
(
𝑅𝑅𝑡𝑡+1 + 𝛽𝛽max

𝑎𝑎
𝑄𝑄(𝑆𝑆𝑡𝑡+1, 𝑎𝑎)

)
,

where 𝛼𝛼𝛼 0 < 𝛼𝛼 𝛼 1 is learning rate and 𝛽𝛽𝛽 0 < 𝛽𝛽 𝛽 1 is
discount rate. In (1), the transfer from current to next state
means the 𝑄𝑄 function gradually approaches its maximum.
Therefore, when a high reward is obtained in a certain state,
the reward is propagated with each update. This enables
learning of the optimal state transitions. In this study, the state
𝑆𝑆𝑡𝑡 is defined as the MCS selected in time 𝑡𝑡, and the action 𝐴𝐴𝑡𝑡

is defined as the MCS transition from 𝑆𝑆𝑡𝑡 to 𝑆𝑆𝑡𝑡+1. For example,
if state 𝑆𝑆𝑡𝑡 is MCS-1, 𝑆𝑆𝑡𝑡+1 is MCS-3, then action 𝐴𝐴𝑡𝑡 is 2.

The reward function used in the proposed method is shown
as follows,

𝑅𝑅𝑡𝑡 = 𝐾𝐾 ·
���
�

𝜂𝜂(𝛾𝛾𝛾𝛾𝛾 𝑡𝑡 ) − 𝜂𝜂(𝛾𝛾𝛾𝛾𝛾 𝑡𝑡−1)���𝐶𝐶 (𝛾𝛾)−𝜂𝜂 (𝛾𝛾𝛾𝑆𝑆𝑡𝑡 )
𝐶𝐶max

��� + 𝛿𝛿

���
�
, (2)

where 𝛾𝛾 is current signal-to-noise ratio (SNR), and 𝜂𝜂(𝛾𝛾𝛾𝛾𝛾 𝑡𝑡 )
is the throughput under the condition that SNR equals 𝛾𝛾 and
MCS is 𝑆𝑆𝑡𝑡 . 𝐶𝐶 (𝛾𝛾) represents the channel capacity under SNR 𝛾𝛾,
and 𝐶𝐶max is maximum available rate in this system. Besides,
𝐾𝐾 is a constant used to adjust reward function, and 𝛿𝛿 is a
small constant set to prevent the denominator of expression
(2) becoming zero. In reward function (2), the numerator
𝜂𝜂(𝛾𝛾𝛾𝛾𝛾 𝑡𝑡 ) − 𝜂𝜂(𝛾𝛾𝛾𝛾𝛾 𝑡𝑡−1) directly measures the throughput im-
provement or degradation from the previous time slot to the
current one, while the denominator

���𝐶𝐶 (𝛾𝛾)−𝜂𝜂 (𝛾𝛾𝛾𝛾𝛾𝑡𝑡 )
𝐶𝐶max

���+𝛿𝛿 penalizes
throughput values far from the Shannon capacity 𝐶𝐶 (𝛾𝛾), scaled
by a maximum possible capacity 𝐶𝐶max. This pushes the agent
to move closer to the theoretical limit.

To formalize the Q-learning formulation in our AMC sys-
tem, we define the state, action, and reward used in the learning
process as follows:

• State (𝑆𝑆𝑡𝑡 ): The state at time 𝑡𝑡 is defined as the currently
selected MCS index, i.e., 𝑆𝑆𝑡𝑡 ∈ S𝑚𝑚, where S𝑚𝑚 = {𝑀𝑀𝑀𝑀𝑀𝑀}.
This definition captures the AMC configuration being
used in the current transmission.

• Action (𝐴𝐴𝑡𝑡 ): The action corresponds to the transition from
the current MCS 𝑆𝑆𝑡𝑡 to the next MCS 𝑆𝑆𝑡𝑡+1. Formally,
𝐴𝐴𝑡𝑡 = 𝑆𝑆𝑡𝑡+1 − 𝑆𝑆𝑡𝑡 , and the action space (𝑆𝑆)𝑎𝑎 includes all
allowable MCS shifts, such as increasing, decreasing, or
maintaining the same MCS.

• Reward (𝑅𝑅𝑡𝑡 ): The reward reflects the benefit of the se-
lected MCS in terms of throughput efficiency. It is defined
in (2) and captures both the throughput gain from the
previous step and the proximity of the current throughput
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Data: Maximum epoch 𝑙𝑙max, MCS set 𝑆𝑆𝑡𝑡 ∈ 𝔖𝔖𝑚𝑚, MCS
transition set 𝐴𝐴𝑡𝑡 ∈ 𝔖𝔖𝑎𝑎, training SNR 𝛾𝛾 ∈ 𝔖𝔖𝑟𝑟

training data 𝜂𝜂(𝛾𝛾𝛾 𝛾𝛾𝑡𝑡 ) ∈ 𝔖𝔖𝑡𝑡 .
Result: Policy 𝑄𝑄(𝑆𝑆𝑡𝑡 , 𝐴𝐴𝑡𝑡 ).
Initialization:
Construct training data 𝜂𝜂(𝛾𝛾𝛾 𝛾𝛾𝑡𝑡 ) by 𝔖𝔖𝑟𝑟 , 𝔖𝔖𝑚𝑚, and 𝔖𝔖𝑡𝑡 ;
Construct training SNR vector;
Choose 𝑆𝑆0 ∈ 𝔖𝔖𝑚𝑚;
(PHASE 1: Policy Training by Q-Learning)
while 𝑙𝑙 ≤ 𝑙𝑙max do

Read training SNR 𝛾𝛾;
Update the 𝑄𝑄 function by (1) with reward function
(2);
𝑙𝑙 ← 𝑙𝑙 + 1;

end
(PHASE II: Policy Deployment)
while Received SNR 𝛾𝛾𝑡𝑡 , current MCS 𝑆𝑆𝑡𝑡 do

Obtain operating SNR by
𝛾̂𝛾 = min𝜃𝜃 ;𝛾𝛾𝜃𝜃 ∈𝔖𝔖𝑟𝑟 | |𝛾𝛾𝜃𝜃 − 𝛾𝛾𝑡𝑡 | |;

Decide next MCS 𝑆𝑆𝑡𝑡+1 by 𝑆𝑆𝑡𝑡+1 = 𝑆𝑆𝑡𝑡 +𝑄𝑄(𝛾̂𝛾𝛾 𝛾𝛾𝑡𝑡 );
end

Algorithm 1: Proposed algorithm.

to the channel capacity. Specifically, the reward encour-
ages MCS decisions that both improve performance and
closely approach the theoretical upper bound.

This formulation allows the agent to iteratively learn a policy
that maps each state-action pair to its expected long-term
reward, enabling optimal MCS adaptation in dynamic channel
conditions.

After offline training 𝑄𝑄 function iteratively using expres-
sions (1) and (2), the resultant policy is implemented in the
wireless system, and the throughput can be maximized by the
AMC with trained policy. The proposed method is summarized
in Algorithm 1.

During the offline training phase, the agent iteratively up-
dates the Q-function by exploring the state-action space and
refining its policy based on the received rewards. The training
is performed offline using a predefined SNR vector and a
throughput table constructed via simulations. As the training
epoch index 𝑙𝑙 approaches the maximum epoch 𝑙𝑙max the Q-
values converge, meaning that the policy becomes increasingly
stable and consistent in selecting MCSs that maximize the
long-term expected reward. In our experiments, we observed
that with a learning rate 𝛼𝛼 = 0.001 and discount rate
𝛽𝛽 = 0.75, the Q-function typically stabilizes before reaching
1000 epochs. The convergence is evaluated by monitoring
the change in Q-values across epochs and verifying that the
selected MCS no longer fluctuates significantly under identical
SNR conditions. This behavior indicates that the agent has
effectively learned a near-optimal MCS switching strategy for
the given environment, making it suitable for deployment in
real-time AMC applications.

IV. SIMULATION RESULTS

To validate the effectiveness of the proposed method, we
conduct computer simulations for proposed method and com-

pare the performance with the results obtained by k-nearest
neighbor (kNN) method [13], which is one of the most used
machine learning technologies used for AMC, as a benchmark.

Besides, to generalize the usefulness of the proposed
method, in this study three of 3GPP standard channels, EPA3
(extended pedestrian A channel with speed 3 km/hr), EVA30
(extended vehicular A channel with speed 30 km/hr), and
ETU30 (extended typical urban channel with speed 30 km/hr)
[14], are adopted in the simulations.

The wireless transceiver used in this simulation is an
orthogonal frequency division multiplexing (OFDM) system
with multi-antenna techniques. The simulation parameters are
summarized in Table I. There are 16 MCSs implemented in
this system, which are listed in Table II. In this simulation,
it is assumed that there is only one single user in the system
and effectively one resource block spanning 2048 subcarriers.

The simulation results under EPA3 are shown in Fig. 5. In
Fig. 5, the red solid curve represents the throughput resulting
from the AMC with optimal MCS switching thresholds which
are found by manually checking the training data, and can be
viewed as the ideal throughput result under EPA3 environment.
Besides, the green dash-dot curve means the averaged through-
put result of kNN-based method by averaging the results
of 𝑘𝑘 = 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, while the black dotted
curve shows the maximum throughput of kNN-based method
with 𝑘𝑘 = 5. In addition, the blue dashed curve is the throughput
obtained by the proposed AMC method.

From the simulation results, although the throughput result-
ing from the proposed method (blue dashed curve) still shows
little performance loss comparing with the ideal result obtained
by LUT method (red solid curve), it can be observed that the
proposed method can achieve the optimal performance under
EPA3 environment. However, the best result obtained by kNN-
based method (black dotted curve, 𝑘𝑘 = 5) shows that, although
the kNN-based method can obtain nearly optimal result under
high SNR condition, its throughput is dramatically degraded
under low SNR condition. Especially, when comparing the
sum throughput of proposed method and the best result by
kNN-based method in the simulated SNR range, it can be seen
that the proposed method can provide about 44% throughput
improvement compared to the kNN-based result.

The simulation results under EVA30 and ETU30 environ-
ments are shown in Fig. 6 and 7, respectively. In Fig. 6 and 7,
the meanings of red solid, green dash-dot, black dotted, and
blue dashed curves, are the same as those in Fig. 5. Although
the results in Fig. 6 and 7 are obtained under different
wireless environments, it can be obviously observed that, the
proposed method can achieve nearly optimal performance and,
can provide significant throughput improvement compared
to kNN-based method. Especially, when comparing the sum
throughput of proposed method and the best result by kNN-
based method in the simulated SNR range, it can be seen
that the proposed method can provide about 49% and 81%
throughput improvement compared to the kNN-based results
under EVA30 and ETU30 environments, respectively.

From the simulation results shown above, there are several
points should be further discussed. Firstly, considering the
mechanism of the kNN-based method, when determining the
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MCS of test data, the MCS of the 𝑘𝑘 nearest training data points
in the vector space is firstly obtained, and the desired MCS is
determined based on a majority of the nearest 𝑘𝑘 training data.
Based on this principle, it is necessary to adjust the value of 𝑘𝑘 ,
because an inappropriate choice of 𝑘𝑘 may lead to underfitting
or, in particular, performance degradation due to overfitting.
The experimental results show that in the kNN-based method,
the optimal value of k must be determined through learning for
each SNR. Therefore, we can know that kNN-based method
cannot automatically help AMC to maximize throughput.

In addition, by observing the best results of kNN-based
method, i.e., the black dotted curves in Fig. 5, 6, and 7, it can
be seen that the throughput is almost zero when SNR is low.
However, by observing the averaged results of the kNN-based
method, i.e., the green dash-dot curves in Fig. 5, 6, and 7,
it can be seen that, when using different 𝑘𝑘 values, a certain
level of throughput can be achieved. This phenomenon shows
the difference between the throughput behaviors of individual
results and the averaged results. It should be noted that, in this
study we have tested multiple 𝑘𝑘 values of kNN-based method
and even averaged their results to find the best performance
to ensure the fairness of comparison. This fact means that
kNN-based method requires adjusting 𝑘𝑘 for each SNR, which
implies a lack of adaptability.

Besides, it can be observed that, the kNN-based method out-
performs LUT and proposed method in certain SNR regions.
This behavior can be attributed to the underlying granularity
difference in decision mapping. Specifically, both the LUT
and the proposed Q-learning methods rely on discretized
SNR bins (e.g., in 10 dB intervals) during training or table
construction, which may result in suboptimal MCS selection at
bin boundaries. In contrast, the kNN method decides the most
likely MCS from the k nearest neighbors, which allows finer-
grained interpolation across SNR values. As a result, in some
scenarios, kNN may incidentally outperform the discretized
schemes.

Furthermore, for the proposed Q-Learning-based method,
although in policy training phase (PHASE I in Algorithm 1)
it incurs a complexity of O(𝑙𝑙max · |𝑆𝑆 | · |𝐴𝐴|), where |𝑆𝑆 | denotes
the size of state space (number of MCSs) and |𝐴𝐴| is the
size of action space (number of MCS transitions), the policy
deployment phase (PHASE I in Algorithm 1) requires only a
simple Q-table lookup with constant-time complexity O(1). In
contrast, the kNN-based method requires computing distances
to all stored training instances with complexity O(𝑛𝑛 ·𝑑𝑑), where
𝑛𝑛 is the size of training dataset and 𝑑𝑑 is the feature dimension
(𝑑𝑑 = 1 in this study as only SNR is used). Therefore, the
proposed method achieves lower complexity in the online
wireless environment, making it more suitable for real-time
AMC adaptation.

In addition, it should be noted that, in our current work, we
focus on a simplified scenario involving a single user and a
single physical resource block (PRB). This setting allows us to
conduct a preliminary evaluation of the proposed Q-learning-
based AMC scheme under controlled conditions, facilitating
direct comparison with baseline methods such as kNN. While
this assumption limits the spatial and frequency granularity
of MCS adaptation, it serves as a necessary first step toward

validating the learning framework and its practical feasibility.

TABLE I: Simulation Parameters.

Parameter Value
Central Frequency 𝑓𝑓𝑐𝑐 4.7 GHz
Subcarrier Number 2048
Cyclic Prefix (CP) Length 512
Data Subcarrier Number 2030
Subcarrier Interval 15 kHz
Modulation Schemes BPSK, QPSK, 16QAM, 64QAM
Channel Coding Scheme LDPC
Number of Transmit Antennas 4
Number of Receive Antennas 4
Learning Parameters (𝛼𝛼, 𝛽𝛽) (0.001, 0.75)
Reward Parameters (𝐾𝐾𝐾 𝐾𝐾 ) (10, 10−7 )
Maximum Epoch 𝑙𝑙max 1000

TABLE II: MCS Table.

MCS 　 　 Modulation Scheme 　 　 Coding Rate SE
0 　　 BPSK 0.25 0.25
1 BPSK 0.50 0.50
2 BPSK 0.60 0.60
3 BPSK 0.90 0.90
4 　　 QPSK 0.25 0.50
5 QPSK 0.50 1.00
6 QPSK 0.60 1.20
7 QPSK 0.90 1.80
8 　　 16QAM 0.25 1.00
9 16QAM 0.50 2.00
10 16QAM 0.60 2.40
11 16QAM 0.90 3.60
12 　 64QAM 0.25 1.50
13 64QAM 0.50 3.00
14 64QAM 0.60 3.60
15 64QAM 0.90 5.40

Fig. 5: The simulation results for EPA3 channel.

V. CONCLUSION

In this work, we proposed a Q-learning-based AMC scheme
for maximizing system throughput in time-varying wireless
channels. Unlike conventional LUT-based methods or recent
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Fig. 6: The simulation results for EVA30 channel.

Fig. 7: The simulation results for ETU30 channel.

machine learning approaches such as kNN-based AMC, our
method formulates MCS selection as a reinforcement learning
problem and learns a policy offline to make MCS decisions
with low online complexity.

Through extensive simulations under 3GPP EPA3, EVA30,
and ETU30 channel models, it can be seen that the proposed
method achieves significant throughput improvements of 44%,
49%, and 81% compared to a benchmark kNN-based AMC
scheme. These results highlight the practicality and adaptabil-
ity of Q-learning for AMC under realistic channel variations.

It should be noted that in this work, we focused on a sim-
plified single-user, single-PRB setting to validate the proposed
learning framework under controlled conditions. An important
next step is to extend the Q-learning AMC framework to
multi-user and multi-PRB scenarios. Due to the low online
complexity and modular design, such extension is both feasible
and promising, and we identify it as our future research
direction.

In summary, this study presents a reinforcement learning-
based AMC solution that stands out from existing approaches
in terms of both performance and complexity. The combination
of offline policy training and low-complexity deployment
results in a method that is not only effective, but also scalable
and practical for next-generation wireless systems.
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