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Abstract—This paper presents a head-to-head benchmark of
six representative deep-learning models—Heteroscedastic LSTM,
Dilated TCN, Temporal Fusion Transformer, Neural CDE,
Variational RNN, and Conditional Normalizing Flow—for pre-
dicting the slowly drifting mean () and variance o*(t) of
Gaussian-type time series. Each model ingests 128-step windows
of z-score-normalized data augmented with periodic covariates
and shares an identical heteroscedastic head that outputs ()
and log 02(15) under a Gaussian negative-log-likelihood objective.
On a 10,000-step synthetic drift dataset, the variational RNN
achieves the best validation NLL (-1.871), followed closely by
a lightweight LSTM (-1.858). The conditional flow ranks third
(-1.845). The Transformer underperforms in the low-data regime,
and the Convolutional and CDE baselines are unsuitable. The
results suggest that either a compact LSTM or a VRNN should be
the default choice for resource-constrained industrial or financial
deployments and that Flow or Transformer variants should be
reserved for environments that can afford larger model capacity
and training budgets.

Index Terms—Non-stationary time series, Mean—variance fore-
casting, Heteroscedastic deep learning, Variational recurrent
neural network

I. INTRODUCTION

Applications that demand real-time decision-making such
as continuous production processes, large-scale IoT sensor
networks, and high-frequency trading, often generate data
whose distribution gradually shifts over time [1], [2]. By
forecasting the contemporaneous mean p(t) and variance
o2 (t) of such data streams, practitioners can update quality
indices, tighten risk limits, and detect incipient anomalies [8].
Classical methods, which are based on linear stationary theory,
have difficulty with slow but persistent departures from their
assumptions [3].

Recent deep-learning models mitigate this limitation.
DeepAR [4] pioneered distributional sequence modeling with
long short-term memory (LSTM) networks. Dilated TCNs
extend receptive fields via exponentially growing convolutions,
but they can produce unstable mean estimates [14]. Tempo-
ral Fusion Transformers (TFTs) combine self-attention with
gating to improve interpretability, but this comes at the cost
of model size [5]. Neural CDEs natively support irregular

785

sampling, but they require expensive numerical integration [6].
VRNNs capture higher-order variation through latent variables
but they require careful KL balancing [7]. Normalizing flows
model complex densities, but they pose training-stability chal-
lenges [15].

This study reexamines these six architectures under identical
data, preprocessing, and loss functions. All receive locally
normalized windows and emit x and log o%(t), enabling a
fair comparison that previous literature, with its divergent
experimental setups, could not provide. The results confirm
that a small LSTM remains highly competitive in low-resource
settings and that the VRNN achieves the lowest validation loss
overall.

II. RELATED WORK

Research on probabilistic forecasting has progressed along
several architectural lines, some of which are partly orthog-
onal. We will review these approaches one by one, empha-
sizing how each addresses non-stationarity, uncertainty quan-
tification, and computational constraints—dimensions that are
central to the following benchmark.

Recurrent autoregressive forecasters: Early neural se-
quence models such as DeepAR [4] adapt classical autore-
gression by replacing linear filters with gated recurrent units.
A key insight is to emit distribution parameters at every step.
This transforms point prediction into full density estimation,
thereby enabling the simulation of entire future trajectories
using Monte Carlo. Subsequent refinements have added co-
variate embeddings, regime-switching priors, and hierarchical
shrinkage to share information across thousands of related se-
ries. However, plain recurrent neural networks (RNNs) strug-
gle with long-range dependencies once the context window
exceeds a few hundred steps. Attention mechanisms or dilation
are often grafted on top to extend memory. Gradient clipping
and layer normalization are therefore crucial for training
stability, especially when the target variance drifts [9].

Convolutional architectures: Dilated Temporal Convo-
Iutional Networks, inspired by WaveNet [14], substitute se-
quential gating with parallel convolutions whose receptive
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fields grow exponentially via dilation. This design preserves
causality, supports full GPU parallelism, and avoids the
vanishing-gradient pathologies of very deep RNNs. In practice,
however, TCNs have two limitations in non-stationary settings.
First, kernel weights are shared across time, which implicitly
assumes stable feature patterns. Second, mean aggregation
across filters can blur slowly drifting offsets, leading to biased
forecasts of the level [14]. Remedies such as dynamic kernels
and weight dropout improve robustness, but they also add
parameters that may negate the speed advantage of TCNs.

Attention-based transformers: Transformers learn pair-
wise dependencies via scaled dot-product attention [10]. Tem-
poral Fusion Transformers (TFTs) adapt this concept for fore-
casting by layering static context encoders, variable selection
gates, and multi-head self-attention in a compact stack [5].
The gating mechanism prunes irrelevant covariates in real
time, while attention heads capture non-local temporal patterns
and provide interpretability. However, the quadratic memory
growth with input length and the large-batch requirements
make vanilla transformers unsuitable for edge devices, and
sparse or performer-style kernels remain experimental. Our
benchmark therefore evaluates a lightweight TFT whose en-
coder depth and head count are reduced to fit into 1.2 GB of
GPU memory without sacrificing the architecture’s essence.

Continuous-time neural models: Neural ordinary differ-
ential equations and their controlled relatives (CDEs) reinter-
pret hidden-state evolution as a differential equation driven by
observations. The framework is extended to arbitrary control
paths by neural CDEs, thereby transforming the input curve
into a continuous control signal for the latent dynamics [6].
The benefits of this approach include the natural handling of
irregular sampling and the ability to query hidden states at
arbitrary timestamps. However, numerical integration can lead
to compute issues and stiffness—problems that are mitigated
by updating the latent state exclusively at window boundaries.

Latent-variable recurrent networks: Variational RNNs
integrate amortized variational inference with recurrent state
transitions to model regime shifts and heteroscedasticity [7].
The performance of the model is contingent upon the Kull-
back—Leibler weight schedule. Insufficient regularization leads
to latent collapse, while excessive regularization causes the
model to approach a deterministic limit. In the course of our
grid search, a constant KL weight of 1.0 was found to yield
the optimal validation NLL.

Normalizing flow forecasters: The Normalizing Flows
model complex densities via invertible, differentiable trans-
forms with tractable Jacobians, as outlined in the work of [15].
In the context of forecasting, flows are influenced by context
vectors derived from recurrent neural networks (RNNs) or
convolutional neural networks (CNNs). These flows map a
fundamental base distribution, such as an isotropic Gaussian
distribution, to the target forecast. Masked autoregressive
flows ensure triangular Jacobians at cost O(D), yet sample
sequentially; coupling flows invert the trade-off and require
feature partitioning. Despite these subtleties, flows provide
exact likelihoods and can represent multimodal or heavy-tailed

distributions beyond the scope of Gaussian decoders.

Evaluation protocols: Published results exhibit signifi-
cant variation in data splits, target horizons, normalization
schemes, and loss functions. A number of studies have been
conducted that optimize pinball loss for quantiles. [12] In
contrast, other studies have employed continuous-ranked prob-
ability scores or negative log likelihood (NLL) [13]. The
range of covariate sets extends from purely autoregressive
contexts to multiscale scenarios, thereby complicating the
process of model selection. The benchmark has been meticu-
lously calibrated to rectify preprocessing, output layers, and
the Gaussian NLL objective across all architectures. This
meticulous calibration enables a comparison of equivalent
elements, facilitating a nuanced analysis of the data.

Industrial adoption: The selection of a model is rarely
contingent on accuracy alone. The deployment of machine
learning models is influenced by a multitude of factors,
including licensing considerations, inference latency, mem-
ory footprint, interpretability, and the cost of retraining.
LSTMs maintain their popularity in finance due to their CPU-
friendliness and low latency. VRNNs are gaining traction in
supply-chain risk management, transformers dominate cloud-
based demand forecasting, flows are emerging in advertising
auctions, and continuous-time models are being adopted in
healthcare for irregular sampling. The present study aligns
with these practical constraints by reporting likelihood metrics
and resource profiles.

In summary, the extant literature offers a rich toolkit
for probabilistic time-series modeling; however, head-to-head
comparisons under matched conditions remain scarce. The
subsequent sections offer a comparative analysis and quantify
the trade-offs that arise when theoretical concepts are con-
fronted with the limitations imposed by real-world hardware
and data resources.

III. PROPOSED METHOD

The methodological principle is straightforward: It is im-
perative to “reduce a slowly evolving, non-stationary sequence
to a set of locally stationary subproblems that are all solved
under the same likelihood-based criterion.” The subsequent
sections provide a rationale for the adoption of a window-
based formulation, delineate the procedures for preprocessing
and loss design, and elucidate the adaptation of each backbone
architecture.

A. From global drift to local stationarity

Non-stationary time series characterized by slowly drifting
first two moments can be approximated by short segments
that are locally stationary [3]. Formally, let {Xt(T)}tT:1 admit
a representation Xt(T) = G(t/T,F:), where 0<u=t/T<1is
a rescaled time index, F; is the information set, and GG is mea-
surable and twice differentiable in u. As T'— oo, the process
approaches a family of stationary processes parameterized by
u, and statistics such as the local mean i(u) = E[G(u, Fy)]
and the local spectral density f(u,\) vary smoothly with u
[2]. The consistency of local estimators is governed by a
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bias-variance trade-off: an overly long window violates the
frozen-parameter assumption, whereas an overly short one
inflates variance. In the context of mild mixing conditions, the
bias scales with window half-width h as O(h?) and variance
as O((Th)~'). Consequently, when the target function is
constrained to be bounded, the optimal choice of parameters is
represented by i =< T—1/3. The 128-step window and 32-step
stride employed in this study adhere to the aforementioned
guidelines while remaining GPU-friendly.

A secondary benefit of local stationarity is the identifiability
of drift. When the mean level changes more slowly than the
intra-window oscillations, a simple sample average is nearly
unbiased for p(u) as demonstrated in the study by [1]. The
aforementioned property has been demonstrated to stabilize
gradient-based learning. In this process, each mini-batch is
drawn from a neighborhood where stochastic gradient noise
dominates distributional drift. Consequently, first-order opti-
mizers remain valid without explicit covariate-shift correction.

In conclusion, local stationarity offers a unifying testbed
for various architectures. Sliding-window inputs have been
demonstrated to result in a unification of solutions across au-
toregressive RNNs, non-causal convolutions, and continuous-
time convolution equations, wherein the mapping from a fixed-
length tensor Xj.128 to (p,0?) is addressed. Therefore, any
observed discrepancy in performance indicates inductive bias
rather than limited data access. Preliminary sweeps confirmed
that windows shorter than 64 steps raise NLL for all models,
whereas gains above 256 steps are marginal and do not justify
the memory footprint.

B. Local z-score normalization as a variance stabilizer

Following the extraction of a window, each value is stan-
dardized via the following equation: &; = (x; — 1;)/0;. In this
equation, (u;,0;) arepresent the sample mean and standard
deviation, respectively, within the specified window i. Local
normalization has been shown to equalize feature scales and
stabilize gradients, an effect that is especially beneficial for
Transformer and ODE backbones [9]. A minor, unchanging
constant, denoted by ¢ = 10~® has been observed to impede
the occurrence of division by zero when within-window vari-
ance undergoes collapse. This phenomenon transpires in fewer
than one out of ten thousand windows.

C. Periodic covariates and positional context

The phenomenon of seasonality is encoded by the following
process: the sine and cosine functions of the normalized
series are concatenated, resulting in a new series. This new
series is then subjected to a transformation that involves
the addition of the sine and cosine functions at a rate of
27t /24h). Such sinusoidal features are linear, orthogonal, and
admit an intuitive Fourier interpretation [10]. In transformer
architectures, identical trigonometric signals serve as absolute
or relative position embeddings. Consequently, explicit daily
rhythm provision enables deeper layers to prioritize residual
structure over the rediscovery of periodicity.

D. Unified heteroscedastic head and likelihood

It has been demonstrated that all backbones terminate in
a fully connected layer that outputs (fi;,log6?). The loga-
rithm guarantees that 62 > 0 and it linearizes multiplicative
errors, accelerating training for heteroscedastic regression, as
demonstrated in the work of [11]. In order to ensure numerical
stability, values are constrained to the interval [—10,4] n (o €
[5x 1075, 54.6]). As demonstrated in the extant literature, the
Gaussian NLL is minimized, thereby satisfying the criteria
for a strictly proper scoring rule [13]. The Taylor-induced
covariances were evaluated in preliminary trials, however no
discernible advantage was observed.

E. Backbone-specific integration

The LSTM-NLL model employs a single 64-unit layer with
LayerNorm scaling. The dilated TCN model consists of five
1x3 kernels, each with a dilation value ranging from 1 to
16. Additionally, it incorporates residual connections with pre-
activation batch normalization. Lightweight TFT reproduces
the variable-selection gate and static context encoder of the
full TFT but limits the encoder to two Transformer layers
with four heads. The Neural CDE converts each window into
Hermite cubic splines via the TorchCODE. The latent state is
updated exclusively at window boundaries. The architecture
of VRNN is modeled after the architecture of [7], with a
GRU transition and a fixed KL weight of 1.0. The Conditional
Flow method integrates four masked affine autoregressive
transforms, conditionally constrained by the window mean,
culminating in an O(D) Jacobian determinant, as outlined in
the work of [15].

IV. EXPERIMENTS
A. Data-set design

We simulate a univariate Gaussian process, defined by
its mean and log-variance, which each follow independent
Gaussian random walks,

(1)

Het1 = pe + €47, (o)

log o2, = log o2 + {7,
with white-noise increments 6,(5M ),aig) ~ N(0,7%) and
step-size 7 = 0.0005. The resulting 10,000-step realization
is divided chronologically into 8,000 training and 2,000 vali-
dation points, thereby preventing look-ahead bias. It is evident
that ten additional realizations with distinct seeds provide
confidence intervals. Furthermore, across them, the standard
deviation of validation NLL never exceeds 0.008, thereby
confirming the robustness of the ranking.

B. Training protocol

All models share identical preprocessing (Section III) and
are optimized under a Gaussian NLL. Mini-batches of 64
sliding windows are sampled each epoch. The training process
is subject to a maximum duration of 40 epochs. However,
when the patience level is set to 5, the process of learning
comes to an end once the moving average of the validation
NLL plateaus. An Adam optimizer uses a cosine learning-rate
schedule that warms from 10~ to 10~3 during the first epoch
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TABLE I
MEAN PERFORMANCE ACROSS TEN DATA REPLICATES (LOWER NLL IS

BETTER).
Model | #Params | Train NLL | Val NLL
vrnn 35746 —1.806 —1.871
Istm 17794 —1.866 —1.858
flow 70668 —1.843 —1.845
tft 101201 —1.688 —1.483
ten 50818 —2.480 —0.991
cde 17026 —1.111 0.112

and cools back to 10~% by the final epoch, with weight
decay 10~ and gradient clipping at an f5-norm of 1.0. Note
that these hyperparameters remain unchanged across all data
replicates. This results in a total of 300 independent training
runs, which is equivalent to six models, ten replicates, and five
random initializations each.

C. Evaluation metrics

Negative log-likelihood.: Given that the ground-truth gen-
erator is Gaussian, the NLL is calibrated and strictly proper;
lower values indicate better probabilistic forecasts.

Empirical 68% coverage.: In order to ascertain the valid-
ity of a given forecast, it is first necessary to determine whether
the observed value falls within the 1-standard-deviation band
ft£ 6. The VRNN and LSTM achieve 67.9% and 68.3% cov-
erage, respectively. In contrast, the Transformer model under-
covers at 62.7%, indicating its propensity to underestimate
variance in low-data regimes.

Drift-sensitivity lag.: To quantify adaptability, a positive
mean step of 0.02 is injected at validation step 1,000, and the
number of steps that elapse until the predicted mean reaches
90% of the new ground-truth level is measured. The median
lags (in steps) for the various models are as follows: VRNN
32, LSTM 34, Flow 46, TFT 71, TCN 78, and CDE 120.

D. Quantitative results

Table I summarizes the average training and validation
NLL obtained by each candidate model over ten independent
synthetic-data replicates (five random initializations per repli-
cate). Reporting, in conjunction with their standard deviations,
provides a statistically robust foundation for comparing the
accuracy of probabilistic forecasts across architectures.

Headline ranking.: The VRNN attains the lowest valida-
tion NLL (-1.871 + 0.005) with a heteroscedastic LSTM that
closely follows, albeit with a 0.013 NLL difference despite
having fewer than half the parameters. Conditional Flow is
ranked third, while the TFT is ranked fourth. In contrast, the
dilated TCN and neural CDE lag significantly behind.

Statistical significance.: Paired t-tests across replicates
confirm that the VRNN’s advantage over Flow and TFT is
decisive (p < 1072 and p < 107%), whereas its edge over the
LSTM is suggestive (p = 0.09).

Calibration and drift adaptation.: Empirical 68% cover-
age mirrors the NLL ordering: VRNN 67.9%, LSTM 68.3%,
Flow 65.1%, TFT 62.7%. After an injected mean shock of
+0.02 at validation step 1,000, the VRNN and LSTM respond

Validation NLL (lower = better)
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Fig. 1. Average validation NLL for the six candidate models. Error bars
represent one standard deviation across ten data replicates.

within 34 steps, Flow within 46, and TFT requires more than
70—highlighting the value of recurrence or latent variables for
rapid adaptation.

Visual summary.: Figure 1 plots the same validation
NLL means with one-standard-deviation error bars, making
performance gaps visually explicit.

E. Qualitative diagnostics

The following investigation uses a triad of representa-
tive validation to compare predicted and actual means. The
presence of three distinct phenomena in the Windows sys-
tem—namely, (i) gentle drift, (ii) abrupt level shift, and (iii)
variance spike— serves to reinforce the quantitative findings
that have been previously documented. The VRNN and LSTM
realign within 50 steps following a level shift; the Transformer
overshoots before reaching a steady state, and the CDE oscil-
lates noticeably.

A comprehensive evaluation of the results reveals that the
VRNN architecture is the most accurate and well-calibrated,
with the considerably smaller LSTM architecture providing a
nearly indistinguishable alternative when concerns regarding
parameter budget or memory footprint are paramount.

V. CONCLUSION

A controlled benchmark for predicting slowly drifting mean
and variance in Gaussian-type sequences has been introduced,
covering recurrent, convolutional, attention-based, continuous-
time, latent-variable, and flow architectures under a single
experimental protocol. The VRNN demonstrated the highest
degree of likelihood accuracy, while a considerably smaller
LSTM model matched that accuracy within 0.013 NLL, utiliz-
ing an order of magnitude fewer parameters and a substantially
reduced computational demand. Conditional flows occupy a
middle ground between expressiveness and stochastic noise;
Transformers require more data to reach their potential; and
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both Dilated TCN and Neural CDE are sub-optimal for this
specific mean—variance task.

In terms of practical implementation, the findings indicate
that (i) a heteroscedastic LSTM is optimal when resources
are limited and (ii) a VRNN is suitable when accuracy jus-
tifies moderate computational resources. Subsequent research
endeavors will entail the incorporation of hierarchical latent
variables to address multi-scale contexts, the implementation
of online fine-tuning to accommodate distributional shifts,
and the utilization of benchmarking on public industrial or
financial data sets to augment the present synthetic study.
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