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Abstract— Dengue fever remains a persistent public health
challenge in Thailand, with recurring outbreaks placing a heavy
burden on health systems. The Eastern Economic Corridor
(EEC), comprising Chachoengsao, Chonburi, and Rayong
provinces, is particularly vulnerable due to rapid urbanization,
industrial growth, and dense populations. Accurate forecasting
of dengue cases is therefore critical for outbreak preparedness
and effective interventions. This study compares two forecasting
approaches—Autoregressive Integrated Moving Average
(ARIMA) and Long Short-Term Memory (LSTM) neural
networks—using dengue case data from 2012 to 2022 provided
by the ASEAN-South Korea GFID platform. Model
performance was evaluated under different data partitions
using MAE, MSE, RMSE, and MAPE at regional and provincial
levels within the EEC. Results show that ARIMA performs
better in provinces with stable, linear patterns, such as Rayong,
while LSTM provides greater accuracy in provinces with
volatile and nonlinear trends, including Prachinburi and
Chanthaburi. Findings indicate that no single model is
universally superior; instead, model choice should align with
local data characteristics. The study provides a comparative
framework to support early-warning systems for dengue and
suggests future directions involving hybrid models, external
variables, and explainable AI for real-time epidemic
preparedness.
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Dengue fever [1] is a mosquito-borne viral disease mainly
transmitted by Aedes aegypti, common in tropical and
subtropical regions including Thailand. Over the past decade
(2012-2022), the country has faced recurring outbreaks that
are difficult to predict and continue to strain the public health
system. The Eastern Economic Corridor (EEC), covering
Chachoengsao, Chonburi, and Rayong, is a rapidly developing
region driven by industrial, transport, and residential growth.
Such expansion, together with rising population density, has
created favorable conditions for dengue transmission [2].

INTRODUCTION

Accurate forecasting is essential for outbreak preparedness
and resource allocation. Time series methods are widely
applied in this field as they capture long-term trends, seasonal
patterns, and fluctuations in historical data [3]. ARIMA
(AutoRegressive Integrated Moving Average) is a classic
statistical model effective for linear and stationary series,
while LSTM (Long Short-Term Memory) neural networks
can learn nonlinear and long-term dependencies, offering
potential advantages in more complex epidemic patterns [4],

[5].

This study compares ARIMA and LSTM models in
forecasting dengue cases in the EEC using 2012-2022 data
[6]. The objective is to evaluate their accuracy at both regional
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and provincial levels and provide a framework for selecting
suitable forecasting tools. Such evidence can support local
health management, early warning systems, and rapid
responses to emerging diseases.

II. RELATED WORK

A. Eastern Economic Corridor (EEC)

The Eastern Economic Corridor (EEC) is Thailand’s
flagship economic initiative aimed at driving competitiveness
under the Thailand 4.0 policy. It promotes foreign investment,
infrastructure development, and industrial expansion [7]. Key
projects include the high-speed rail network, Laem Chabang
Port Phase 3, and U-Tapao Airport [8], [9]. These
developments have accelerated urbanization, land-use
transformation, and population growth, which indirectly
increase the risk of dengue transmission [10], [11]. Efficient
infrastructure planning and public health strategies are
therefore vital to mitigate these impacts [12].

B. Dengue Fever and Forecasting

Dengue fever remains a major public health challenge in
tropical regions, with the WHO estimating 390 million
infections annually [1]. In Thailand, outbreaks occur
cyclically every 2-5 years [6], influenced by rapid
urbanization, mobility, and climate conditions [2].
Forecasting has become a key tool for epidemic preparedness.

Statistical models such as ARIMA have been widely used
to capture temporal and seasonal patterns of dengue incidence.
Bhunia and Ghosh [13] demonstrated ARIMA’s effectiveness
in India, while Mahikul et al. [6] applied it successfully in
Thailand. However, deep learning methods, particularly
LSTM, have shown advantages in handling nonlinear and
complex patterns. Wang et al. [14] reported improved
performance of LSTM in China, and Jin et al. [5] confirmed
its utility for predicting vector-borne diseases. Hybrid
approaches have also emerged: Chae et al. [15] combined
ARIMA and LSTM to improve accuracy in the Philippines.

II1.

In this research, the methodology for conducting the study
is divided into four main parts: (1) Data Collection and
Preprocessing, (2) Statistical Analysis, (3) Prediction Model,
and (4) Validation for the Prediction Model. The framework
is illustrated in the figure below.
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Fig. 1. Research Framework

A. Data Collection

Data collection and data use in the research experiments
used Open Data from the ASEAN-South Korea Collaborative
Platform for GFID Project Digital Information Sharing
Platform for Global Disease Epidemics at the website
https://aida.informatics.buu.ac.th/, which is a collaborative
website for collecting data on epidemics in Thailand,
Indonesia, and South Korea. The research used Dengue Virus
data in 2012-2022 in the experiments, which can be accessed
from the website as shown in the figure below.
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Fig. 2. Figure showing the website page for information on epidemic
dissemination.

As illustrated in Fig. 2, we used Dengue Virus data from
2012 to 2022 in the experiment. The data can be displayed
according to the number of Dengue Virus infections in
Thailand as a whole and separated by region into six regions
as follows:
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Fig. 3. The figure shows the total number of infected people in Thailand.
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Fig. 4. Dengue virus cases by region in Thailand from 2012 to 2022.

As illustrated in Fig. 4, the number of dengue virus cases
in Thailand between 2012 and 2022 was grouped and
analyzed by region. The Central (C) region includes 22
provinces, the Northern (N) region 9 provinces, the Southern
(S) region 14 provinces, the Western (W) region 5 provinces,
the Eastern (E) region 7 provinces, and the Northeastern (EN)
region 19 provinces. The figure highlights the temporal trends
of infection across these regions, showing seasonal
fluctuations and recurring outbreak peaks. For further
analysis, Pearson’s correlation was employed to examine the
similarity of infection patterns between regions, using the
number of reported cases in each period as the primary
variable. To analyze the similarity of dengue infection patterns
between two regions, denoted as u, and u;, we employed
Pearson’s correlation coefficient. This measure evaluates the
degree of linear relationship between the time series of
reported cases in each region.Let ;, ; represent the number of
infected individuals in region u during time period i, and letr;,
denote the mean number of cases in region uuu over the
observation period. The similarity between two regions, u,
and u,, is then calculated as follows

Eﬁzl("'uu,ih_Fua)(rub,ih_fub)
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Fig. 5. Similarity of dengue infection patterns between six regions of
Thailand (2012-2022) using Pearson’s correlation.

As shown in Fig. 5, dengue infection patterns across six
regions of Thailand were compared using Pearson’s
correlation. Values close to 1 indicate strong similarity, while
lower values suggest weaker associations. The Eastern (E)
and Western (W) regions show the highest correlation (r =
0.872), followed by Eastern (E) and Northeastern (EN) (r =
0.830), indicating similar epidemic dynamics. In contrast, the
Southern (S) and Western (W) regions have the lowest
correlation (r = 0.310), reflecting distinct outbreak patterns.
These results emphasize regional differences that should
guide targeted surveillance and control strategies.



B. Statistical Analysis

1) Time Series: Data collected sequentially over time,
such as daily, monthly, or yearly, can reflect trends, seasonal
patterns, and uncertainties. Time series analysis is therefore
an important technique used in many fields, such as
economics, energy, finance, and epidemiology, particularly
in forecasting infectious diseases that tend to change
seasonally, such as dengue fever [2].

2) ARIMA (AutoRegressive Integrated Moving Average):
It is a statistical data forecasting method that is popular and
widely used, especially when the data is linear and has a
trend. ARIMA consists of 3 main parts: (1) AR
(AutoRegressive): using the values of past data to create a
model, (2) I (Integrated): making the data stationary and (3)
MA (Moving Average): using the values of errors from the
past to adjust the values in the present. From research by
Mahikul et al. [6] ARIMA was found to be able to predict
infectious disease trends in Thailand satisfactorily, especially
in areas with consistent epidemic patterns.

Yo =c+ X, 0V + X, e + & )
By Y;: The actual value of the data at the time position t ,@;:
Coefficient of AR term (Auto Regression), 8; : Coefficient of
MA term (Moving Average) , & : White noise, p: AR
sequence, d : Number of times of differencing, ¢ : MA
sequence, and ¢ : Constant.

3) LSTM (Long Short-Term Memory): is a Recurrent
Neural Network (RNN) that is designed to learn long-term
sequence relationships using a "memory" structure consisting
of control functions such as forget gate, input gate, and output
gate, allowing the model to retain and forget past data based
on its importance [16].

Forget gate

fe= U(Wf [heog,xe] + bf) (3)
Input gate

ip = oW [hey, x] + by) 4)

¢ = tanh(W, - [he_q1, x¢] + bc) (%)
Update cell state

a=f0c 1+ OT (6)
Output gate

0y = oWy * [he—y, x¢] + by) )
Hidden state output

h; = o, ® tanh(c,) 8)

By x;: Input at t time, h,_;: hidden state from the past, c; :
Cell state at t time, o: sigmoid function, and ©® : Element-
wise multiplication.

4) MAE (Mean Absolute Error): is a measure of the
difference between the actual value and the value estimated
from the model. If the MAE value is low, it means that the
model can estimate the value close to the experimental result.

MAE = %Zi,lei,j - Ry (€))

By R;;: is the actual value, R;; : The predicted value
obtained from the model, and S : Amount of data used in the
model.
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5) MSE (Mean Squared Error): Mean Squared Error

values give special attention to values with large deviations.

MSE =%Zi,j(Ri,j —Ri’j)z (10)
By R;;: is the actual value, R; ; © The predicted value
obtained from the model, and S : Amount of data used in the
model.

6) RMSE (Root Mean Squared Error): is the square root
of MSE, which still gives high weight to the error value and
has the same units as the real data. It is a measure of the error
which has the same characteristics as the square root of the
mean standard deviation. If it is small, it means that the model
can estimate the value close to the real value. It has the
equation.

RMSE =

N2
%ij(Rij = Ri))
is the actual value, I?L-, j : The predicted value
obtained from the model, and S : Amount of data used in the
model.

7) MAPE (Mean Absolute Percentage Error): The
average error is a percentage, suitable for comparing model
performance across areas or different data units.

an
By Ri,j:

R (12)

By R;j: is the actual value, ﬁi,j : The predicted value
obtained from the model, and S : Amount of data used in the
model.

C. Prediction Model

In the research process, we have studied the data division
for use in the experiment. In the research on Dengue Virus, a
survey on the data division was conducted for use in this
research. The research used the following data division
techniques: Split data (1) Training data 70% Test data 30%
(31.25%) (2) Training data 80% Test data 20% (15.63%) (3)
Training data 90% Test data 10% (9.38%) Cross validation (1)
5 folds cross validation (3.13%) (2) 10 folds cross validation
(65.63%). The research employed the ARIMA Model to
determine the optimal data division for the experiment,
utilizing the total number of infected people in Thailand as the
test data. The experimental results of the data division are as
follows.

Ry =R
|

)*100

Table I shows the results of the test of splitting the data.
The Data were collected according to the specified
proportions, namely 70:30, 80:20, and 90:10. The ARIMA
Model was then used to forecast the number of infected people
and evaluate their efficiency, with the results shown in the
image below.

TABLE L EVALUATION OF DATA SPLITTING STRATEGIES (ARIMA)
Type Split 70:30 Split 80:20 Split 90:10
RMSE 127.677 97.439 130.215
MAE 77.341 58.627 87.506
MSE 16301.445 9494.415 16956.018
MAPE 0.123 0.136 0.127

The Fig. 6-8 shows the results of splitting the data into
different periods used in the experiment using the ARIMA
model for the entire country. Therefore, the 80:20 data split is
the most appropriate for this research.
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Fig. 6. Dengue virus cases in Thailand (2012-2022) with a 70:30 train—test
data split.
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Fig. 7. Dengue virus cases in Thailand (2012-2022) with a 80:20 train—test
data split.
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Fig. 8. Dengue virus cases in Thailand (2012-2022) with a 90:10 train—test
data split.

As illustrated in Figs. 68, the dengue case data from 2012
to 2022 were divided into different training and testing ratios,
namely 70:30, 80:20, and 90:10, to evaluate the performance
of the forecasting models. The blue line represents the actual
reported cases, while the red line shows the predicted values
generated by the ARIMA model. Among the three scenarios,
the 80:20 split (Fig. 7) demonstrated the most consistent
alignment between predicted and actual values, indicating
better model stability and generalization. Therefore, this
proportion was selected as the optimal data division for
building and testing both the ARIMA and LSTM forecasting
models.

D. Validation for the Prediction Model

Validation for the Prediction of the research used ARIMA
model and LSTM model to predict infection at the regional
level and in each province in the Eastern region, which is a
province in the EEC area, as shown below.
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1) ARIMA MODEL: Using the ARIMA MODEL to
forecast and test the performance of the forecast, the
performance results are shown in Fig.9.

Fig. 9. Forecasting results of dengue virus cases in six regions of Thailand
(2012-2022) using the ARIMA model.

As illustrated in Fig. 9, the ARIMA model was used to
forecast dengue virus infections across Thailand’s six regions.
The graphs compare the actual number of reported cases with
the predicted values, allowing for an assessment of model
accuracy in different regional contexts. To quantitatively
evaluate forecasting performance, four error metrics—MAE,
MSE, RMSE, and MAPE—were calculated, with the results
summarized in Table II.

TABLE II. REGIONAL FORECASTING PERFORMANCE (ARIMA)

Region MAE MSE RMSE MAPE
TH 18.74 1122.252 33.5 0.281
N 58.627 9494.415 97.439 0.136
W 9.032 191.37 13.834 0.354
E 7.472 100.635 10.032 0.306
S 17.12 915.768 30.262 0.416
EN 30.796 2922.903 54.064 0.196
C 9.952 207.602 14.408 0.33

When evaluating the efficiency of predicting the number
of infected people by province in the Eastern region using the
ARIMA MODEL, the results are shown in Table III.

TABLE IIL PROVINCIAL FORECASTING PERFORMANCE (ARIMA)
Province MAE MSE RMSE MAPE
Sa Kaeo 0.82 2.328 1.526 6.6845E+14

Prachinburi 1471 4.85 2.202 1.2293E+15
Chachoengsao 0.886 1.502 1.226 1.0779E+15
Chonburi 1.46 5212 2.283 1.5092E+15
Rayong 6.422 93.388 9.664 0.538
Chanthaburi 3.377 29.382 5.42 5.9422E+14
Trat 1.211 3.203 1.79 6.7703E+14

2) LSTM MODEL: Using the LSTM model to forecast
and test its performance, the results are presented in Fig.10.



ut

Fig. 10. Forecasting results of dengue virus cases in six regions of Thailand
(2012-2022) using the LSTM model.

As illustrated in Fig. 10, the LSTM model was applied to
forecast dengue virus infections across the six regions of
Thailand. The plots compare actual reported cases with the
predicted values, highlighting the model’s ability to capture
nonlinear and fluctuating outbreak patterns. To assess
forecasting accuracy, the results were evaluated using MAE,
MSE, RMSE, and MAPE, with detailed values presented in
Table IV.

TABLEIV.  REGIONAL FORECASTING PERFORMANCE (LSTM)
Region MAE MSE RMSE MAPE
TH 88.189 20413 142.87 0.199
N 31.402 3853.7 62.078 0.525
W 13.216 376.21 19.396 0.387
E 12.284 376.37 19.4 0.561
S 9.561 168.25 12.971 0.332
EN 73.924 9623.2 98.098 2.66
C 39.49 4576.9 67.652 0.256

When evaluating the efficiency of predicting the number
of infected people by province in the Eastern region using the
LSTM MODEL, the results are as shown in the table V.

TABLE V. PROVINCIAL FORECASTING PERFORMANCE (LSTM)
Province MAE MSE RMSE MAPE
Sa Kaeo 1412 451 2.124 1.3874E+15

Prachinburi 0.996 1.96 14 1.2747E+15

Chachoengsao 1.51 5.291 23 1.2428E+15
Chonburi 8.232 169.874 13.034 0.64
Rayong 3.981 44.426 6.665 1.122E+15
Chanthaburi 1.244 3.792 1.947 8.8414E+14
Trat 1.05 2215 1.488 2.1837E+15

IV. RESULT AND DISCUSSION

The results show that ARIMA and LSTM models have
different performance in forecasting the number of dengue
fever patients in the Eastern Economic Corridor (EEC) and
different regions of Thailand, considering the MAE, MSE,
RMSE, and MAPE indicators.

A. Regional comparison results

For regional comparison results, we have measured the
performance of the prediction results with the values of MAE,
MSE, RMSE, and MAPE as shown in the table VI.
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TABLE VL REGIONAL COMPARISON OF MAE (ARIMA vs. LSTM)

REGION ARIMA:MAE LSTM:MAE
TH 18.74 88.189
N 58.627 31.402
W 17.12 13216
E 7472 12.284
S 9.032 9561
EN 9.952 73.924
C 30.796 39.49
TABLE VI.  REGIONAL COMPARISON OF MSE (ARIMA Vs. LSTM)
REGION ARIMA:MSE LSTM:MSE
TH 1122252 20412.637
N 9494.415 3853.719
W 915.768 376212
E 100.635 376.366
S 19137 168.251
EN 207.602 9623.241
C 2922.903 4576.854
TABLE VIIL.  REGIONAL COMPARISON OF RMSE (ARIMA vs. LSTM)
REGION ARIMA:RMSE LSTM:RMSE
TH 335 142.873
N 97.439 62.078
W 30.262 19.396
E 10.032 19.4
S 13.834 12.971
EN 14.408 98.098
C 54.064 67.652
TABLEIX.  REGIONAL COMPARISON OF MAPE (ARIMA vs. LSTM)
REGION ARIMA:MAPE LSTM:MAPE
TH 0.281 0.199
N 0.136 0.525
W 0416 0.387
E 0.306 0.561
S 0354 0332
EN 033 2.66
C 0.196 0.256

The results from the table show that the ARIMA model
gives lower error values MAE and RMSE than many regions,
especially the Eastern and Central regions, indicating its
suitability for forecasting linear and stationary data. The
LSTM model also shows better performance in some areas,
such as the Northern and Southern regions, which have
fluctuating data patterns and are non-linear.

B. Provincial-level comparison results in the EEC area

Provincial level comparison results, we have measured the
performance of the prediction results with the values of MAE,
MSE, and RMSE as shown in the table XI - XII.

TABLE X. THE PROVINCE’S MAE VALUE OF ARIMA AND LSTM .
Province ARIMA:MAE LSTM:MAE
Sa Kaeo 0.82 1.412
Prachinburi 1471 0.996
Chachoengsao 0.886 1.51
Chonburi 1.46 8.232
Rayong 6.422 3.981
Chanthaburi 3.377 1.244
Trat 1.211 1.05
TABLE XL THE PROVINCE’S MSE VALUE OF ARIMA AND LSTM .
Province ARIMA:MSE LSTM:MSE
Sa Kaeo 2.328 4.51




Province ARIMA:MSE LSTM:MSE
Prachinburi 4.85 1.96
Chachoengsao 1.502 5.291
Chonburi 5212 169.874
Rayong 93.388 44.426
Chanthaburi 29.382 3.792
Trat 3.203 2.215
TABLE XII.  THE PROVINCE’S RMSE VALUE OF ARIMA AND LSTM .
Province ARIMA:RMSE LSTM:RMSE
Sa Kaeo 1.526 2.124
Prachinburi 2.202 1.4
Chachoengsao 1.226 23
Chonburi 2.283 13.034
Rayong 9.664 6.665
Chanthaburi 542 1.947
Trat 1.79 1.488

From the performance evaluation results table, it can be
seen that in many provinces, such as Prachinburi,

Chanthaburi, and Trat, the LSTM model gives lower error

values than ARIMA, reflecting the potential of LSTM in
dealing with complex Time Series data, while in some
provinces, such as Rayong, the ARIMA model still has higher

accuracy.

Overall, ARIMA is suitable for linear and uniform data,
while LSTM is suitable for non-linear and volatile data. This
finding is consistent with previous research that indicates that
LSTM is better at learning long-term relationships in data, but
it is sensitive to parameter settings and requires a large amount
of data for learning. Appropriate application of both methods
in each context may improve the accuracy of forecasting and
epidemic management planning in the EEC area. This shows
that no single model is best in all contexts. Instead, the choice
of ARIMA or LSTM should depend on the data characteristics
and local environment. This finding is essential for future
policy management and dengue early warning systems.

V. CONCLUSION AND FUTURE WORK

This study compared ARIMA and LSTM models for
forecasting dengue fever cases in Thailand’s Eastern
Economic Corridor (EEC) using data from 2012-2022.
Results show that ARIMA provides higher accuracy in
provinces with stable and linear trends, such as Rayong, while
LSTM performs better in provinces with more volatile and
nonlinear patterns, such as Prachinburi and Chanthaburi.
These findings confirm that no single model is universally
optimal; instead, model selection should be guided by the
nature of local data and outbreak dynamics. The comparative
framework presented here can inform evidence-based public
health planning and strengthen dengue early-warning systems
in the EEC, supporting timely interventions and efficient
resource allocation.

Future research should prioritize three directions. First,
hybrid approaches that combine ARIMA, LSTM, or other
advanced techniques may improve predictive accuracy by
leveraging both short-term linear and long-term nonlinear
patterns. Second, integrating exogenous factors—such as
rainfall, temperature, and socioeconomic indicators—can
enhance forecasting reliability and provide actionable insights
for outbreak prevention. Third, developing explainable and
real-time forecasting platforms will allow policymakers and
health professionals to better interpret predictions and respond
rapidly to epidemics. Beyond technical improvement, the
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adoption of sustainable forecasting systems contributes to the
United Nations Sustainable Development Goals (SDGs),
particularly SDG 3 on ensuring healthy lives and SDG 11 on
building resilient, sustainable communities. Embedding such
systems into long-term health governance frameworks can
promote resilience, reduce the social and economic costs of
outbreaks, and ensure preparedness for future vector-borne
and emerging diseases across Thailand and the ASEAN
region.
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