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Abstract— Dengue fever remains a persistent public health 
challenge in Thailand, with recurring outbreaks placing a heavy 
burden on health systems. The Eastern Economic Corridor 
(EEC), comprising Chachoengsao, Chonburi, and Rayong 
provinces, is particularly vulnerable due to rapid urbanization, 
industrial growth, and dense populations. Accurate forecasting 
of dengue cases is therefore critical for outbreak preparedness 
and effective interventions. This study compares two forecasting 
approaches—Autoregressive Integrated Moving Average 
(ARIMA) and Long Short-Term Memory (LSTM) neural 
networks—using dengue case data from 2012 to 2022 provided 
by the ASEAN–South Korea GFID platform. Model 
performance was evaluated under different data partitions 
using MAE, MSE, RMSE, and MAPE at regional and provincial 
levels within the EEC. Results show that ARIMA performs 
better in provinces with stable, linear patterns, such as Rayong, 
while LSTM provides greater accuracy in provinces with 
volatile and nonlinear trends, including Prachinburi and 
Chanthaburi. Findings indicate that no single model is 
universally superior; instead, model choice should align with 
local data characteristics. The study provides a comparative 
framework to support early-warning systems for dengue and 
suggests future directions involving hybrid models, external 
variables, and explainable AI for real-time epidemic 
preparedness. 

Keywords—Dengue Fever, Time Series Forecasting, ARIMA, 
LSTM, Eastern Economic Corridor (EEC), SDGs 

I. INTRODUCTION  
Dengue fever [1] is a mosquito-borne viral disease mainly 

transmitted by Aedes aegypti, common in tropical and 
subtropical regions including Thailand. Over the past decade 
(2012–2022), the country has faced recurring outbreaks that 
are difficult to predict and continue to strain the public health 
system. The Eastern Economic Corridor (EEC), covering 
Chachoengsao, Chonburi, and Rayong, is a rapidly developing 
region driven by industrial, transport, and residential growth. 
Such expansion, together with rising population density, has 
created favorable conditions for dengue transmission [2]. 

Accurate forecasting is essential for outbreak preparedness 
and resource allocation. Time series methods are widely 
applied in this field as they capture long-term trends, seasonal 
patterns, and fluctuations in historical data [3]. ARIMA 
(AutoRegressive Integrated Moving Average) is a classic 
statistical model effective for linear and stationary series, 
while LSTM (Long Short-Term Memory) neural networks 
can learn nonlinear and long-term dependencies, offering 
potential advantages in more complex epidemic patterns [4], 
[5].  

This study compares ARIMA and LSTM models in 
forecasting dengue cases in the EEC using 2012–2022 data 
[6]. The objective is to evaluate their accuracy at both regional 

and provincial levels and provide a framework for selecting 
suitable forecasting tools. Such evidence can support local 
health management, early warning systems, and rapid 
responses to emerging diseases. 

II. RELATED WORK 

A. Eastern Economic Corridor (EEC) 
The Eastern Economic Corridor (EEC) is Thailand’s 

flagship economic initiative aimed at driving competitiveness 
under the Thailand 4.0 policy. It promotes foreign investment, 
infrastructure development, and industrial expansion [7]. Key 
projects include the high-speed rail network, Laem Chabang 
Port Phase 3, and U-Tapao Airport [8], [9]. These 
developments have accelerated urbanization, land-use 
transformation, and population growth, which indirectly 
increase the risk of dengue transmission [10], [11]. Efficient 
infrastructure planning and public health strategies are 
therefore vital to mitigate these impacts [12]. 

B. Dengue Fever and Forecasting  
Dengue fever remains a major public health challenge in 

tropical regions, with the WHO estimating 390 million 
infections annually [1]. In Thailand, outbreaks occur 
cyclically every 2–5 years [6], influenced by rapid 
urbanization, mobility, and climate conditions [2]. 
Forecasting has become a key tool for epidemic preparedness. 

Statistical models such as ARIMA have been widely used 
to capture temporal and seasonal patterns of dengue incidence. 
Bhunia and Ghosh [13] demonstrated ARIMA’s effectiveness 
in India, while Mahikul et al. [6] applied it successfully in 
Thailand. However, deep learning methods, particularly 
LSTM, have shown advantages in handling nonlinear and 
complex patterns. Wang et al. [14] reported improved 
performance of LSTM in China, and Jin et al. [5] confirmed 
its utility for predicting vector-borne diseases. Hybrid 
approaches have also emerged: Chae et al. [15] combined 
ARIMA and LSTM to improve accuracy in the Philippines. 

III. METHODOLOGY 
In this research, the methodology for conducting the study 

is divided into four main parts: (1) Data Collection and 
Preprocessing, (2) Statistical Analysis, (3) Prediction Model, 
and (4) Validation for the Prediction Model. The framework 
is illustrated in the figure below. 

594979-8-3315-5678-5/25/$31.00 ©2025 IEEE ICTC 2025



 
Fig. 1. Research Framework  

A. Data Collection  
Data collection and data use in the research experiments 

used Open Data from the ASEAN-South Korea Collaborative 
Platform for GFID Project Digital Information Sharing 
Platform for Global Disease Epidemics at the website 
https://aida.informatics.buu.ac.th/, which is a collaborative 
website for collecting data on epidemics in Thailand, 
Indonesia, and South Korea. The research used Dengue Virus 
data in 2012-2022 in the experiments, which can be accessed 
from the website as shown in the figure below. 

 
Fig. 2. Figure showing the website page for information on epidemic 
dissemination. 

As illustrated in Fig. 2, we used Dengue Virus data from 
2012 to 2022 in the experiment. The data can be displayed 
according to the number of Dengue Virus infections in 
Thailand as a whole and separated by region into six regions 
as follows: 

 
Fig. 3. The figure shows the total number of infected people in Thailand. 

 
Fig. 4. Dengue virus cases by region in Thailand from 2012 to 2022. 

As illustrated in Fig. 4, the number of dengue virus cases 
in Thailand between 2012 and 2022 was grouped and 
analyzed by region. The Central (C) region includes 22 
provinces, the Northern (N) region 9 provinces, the Southern 
(S) region 14 provinces, the Western (W) region 5 provinces, 
the Eastern (E) region 7 provinces, and the Northeastern (EN) 
region 19 provinces. The figure highlights the temporal trends 
of infection across these regions, showing seasonal 
fluctuations and recurring outbreak peaks. For further 
analysis, Pearson’s correlation was employed to examine the 
similarity of infection patterns between regions, using the 
number of reported cases in each period as the primary 
variable. To analyze the similarity of dengue infection patterns 
between two regions, denoted as   and  , we employed 
Pearson’s correlation coefficient. This measure evaluates the 
degree of linear relationship between the time series of 
reported cases in each region.Let , represent the number of 
infected individuals in region  during time period , and let̅  
denote the mean number of cases in region uuu over the 
observation period. The similarity between two regions,  
and  , is then calculated as follows 

 

,   ∑ ,̅,̅
∑ ,̅ ∑ ,̅

               (1) 

 
Fig. 5. Similarity of dengue infection patterns between six regions of 
Thailand (2012–2022) using Pearson’s correlation. 

As shown in Fig. 5, dengue infection patterns across six 
regions of Thailand were compared using Pearson’s 
correlation. Values close to 1 indicate strong similarity, while 
lower values suggest weaker associations. The Eastern (E) 
and Western (W) regions show the highest correlation (r = 
0.872), followed by Eastern (E) and Northeastern (EN) (r = 
0.830), indicating similar epidemic dynamics. In contrast, the 
Southern (S) and Western (W) regions have the lowest 
correlation (r = 0.310), reflecting distinct outbreak patterns. 
These results emphasize regional differences that should 
guide targeted surveillance and control strategies. 
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B. Statistical Analysis 
1) Time Series: Data collected sequentially over time, 

such as daily, monthly, or yearly, can reflect trends, seasonal 
patterns, and uncertainties. Time series analysis is therefore 
an important technique used in many fields, such as 
economics, energy, finance, and epidemiology, particularly 
in forecasting infectious diseases that tend to change 
seasonally, such as dengue fever [2]. 

2) ARIMA (AutoRegressive Integrated Moving Average): 
It is a statistical data forecasting method that is popular and 
widely used, especially when the data is linear and has a 
trend. ARIMA consists of 3 main parts: (1) AR 
(AutoRegressive): using the values of past data to create a 
model, (2) I (Integrated): making the data stationary and (3) 
MA (Moving Average): using the values of errors from the 
past to adjust the values in the present. From research by 
Mahikul et al. [6] ARIMA was found to be able to predict 
infectious disease trends in Thailand satisfactorily, especially 
in areas with consistent epidemic patterns.    + ∑ ∅ +  ∑  +              (2) 
By : The actual value of the data at the time position  ,∅: 
Coefficient of AR term (Auto Regression),  : Coefficient of 
MA term (Moving Average) ,  : White noise,  :  AR 
sequence,   : Number of times of differencing,   : MA 
sequence, and  : Constant. 

3) LSTM (Long Short-Term Memory): is a Recurrent 
Neural Network (RNN) that is designed to learn long-term 
sequence relationships using a "memory" structure consisting 
of control functions such as forget gate, input gate, and output 
gate, allowing the model to retain and forget past data based 
on its importance [16]. 

Forget gate    ∙ ℎ,  +   (3) 
Input gate    ∙ ℎ,  +   (4) 

 ̃  ℎ ∙ ℎ,  +   (5) 
Update cell state    ⨀  +  ⨀    (6) 
Output gate    ∙ ℎ,  +    (7) 
Hidden state output  ℎ    ⨀ ℎ    (8) 

 
By : Input at t time, ℎ: hidden state from the past,  : 
Cell state at t time,  : sigmoid function, and ⨀ : Element-
wise multiplication. 
 

4) MAE (Mean Absolute Error): is a measure of the 
difference between the actual value and the value estimated 
from the model. If the MAE value is low, it means that the 
model can estimate the value close to the experimental result. 
   

 ∑ , − ,,                             (9) 
 
By , :  is the actual value,  ,  : The predicted value 
obtained from the model, and  : Amount of data used in the 
model. 

5) MSE (Mean Squared Error):  Mean Squared Error 
values give special attention to values with large deviations. 

   
 ∑ , − , ,                      (10) 

By , :  is the actual value,  ,  : The predicted value 
obtained from the model, and  : Amount of data used in the 
model. 

6) RMSE (Root Mean Squared Error): is the square root 
of MSE, which still gives high weight to the error value and 
has the same units as the real data. It is a measure of the error 
which has the same characteristics as the square root of the 
mean standard deviation. If it is small, it means that the model 
can estimate the value close to the real value. It has the 
equation. 

   
 ∑ , − ,,                  (11) 

By , :  is the actual value,  ,  : The predicted value 
obtained from the model, and  : Amount of data used in the 
model. 

7) MAPE (Mean Absolute Percentage Error): The 
average error is a percentage, suitable for comparing model 
performance across areas or different data units. 

     ∑ ,,
,,  ∗ 100                (12) 

By , :  is the actual value,  ,  : The predicted value 
obtained from the model, and  : Amount of data used in the 
model.  
C. Prediction Model 

In the research process, we have studied the data division 
for use in the experiment. In the research on Dengue Virus, a 
survey on the data division was conducted for use in this 
research. The research used the following data division 
techniques: Split data (1) Training data 70% Test data 30% 
(31.25%) (2) Training data 80% Test data 20% (15.63%) (3) 
Training data 90% Test data 10% (9.38%) Cross validation (1) 
5 folds cross validation (3.13%) (2) 10 folds cross validation 
(65.63%). The research employed the ARIMA Model to 
determine the optimal data division for the experiment, 
utilizing the total number of infected people in Thailand as the 
test data. The experimental results of the data division are as 
follows. 

Table I shows the results of the test of splitting the data. 
The Data were collected according to the specified 
proportions, namely 70:30, 80:20, and 90:10. The ARIMA 
Model was then used to forecast the number of infected people 
and evaluate their efficiency, with the results shown in the 
image below. 

TABLE I.  EVALUATION OF DATA SPLITTING STRATEGIES (ARIMA) 

Type Split 70:30 Split 80:20 Split 90:10 
RMSE 127.677 97.439 130.215 
MAE 77.341 58.627 87.506 
MSE 16301.445 9494.415 16956.018 

MAPE 0.123 0.136 0.127 
 

The Fig. 6-8 shows the results of splitting the data into 
different periods used in the experiment using the ARIMA 
model for the entire country. Therefore, the 80:20 data split is 
the most appropriate for this research. 
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Fig. 6. Dengue virus cases in Thailand (2012–2022) with a 70:30 train–test 
data split. 

 
Fig. 7. Dengue virus cases in Thailand (2012–2022) with a 80:20 train–test 
data split.  

 
Fig. 8. Dengue virus cases in Thailand (2012–2022) with a 90:10 train–test 
data split. 

As illustrated in Figs. 6–8, the dengue case data from 2012 
to 2022 were divided into different training and testing ratios, 
namely 70:30, 80:20, and 90:10, to evaluate the performance 
of the forecasting models. The blue line represents the actual 
reported cases, while the red line shows the predicted values 
generated by the ARIMA model. Among the three scenarios, 
the 80:20 split (Fig. 7) demonstrated the most consistent 
alignment between predicted and actual values, indicating 
better model stability and generalization. Therefore, this 
proportion was selected as the optimal data division for 
building and testing both the ARIMA and LSTM forecasting 
models. 

D. Validation for the Prediction Model 
Validation for the Prediction of the research used ARIMA 

model and LSTM model to predict infection at the regional 
level and in each province in the Eastern region, which is a 
province in the EEC area, as shown below. 

1) ARIMA MODEL: Using the ARIMA MODEL to 
forecast and test the performance of the forecast, the 
performance results are shown in Fig.9. 

 

 
Fig. 9. Forecasting results of dengue virus cases in six regions of Thailand 
(2012–2022) using the ARIMA model. 

As illustrated in Fig. 9, the ARIMA model was used to 
forecast dengue virus infections across Thailand’s six regions. 
The graphs compare the actual number of reported cases with 
the predicted values, allowing for an assessment of model 
accuracy in different regional contexts. To quantitatively 
evaluate forecasting performance, four error metrics—MAE, 
MSE, RMSE, and MAPE—were calculated, with the results 
summarized in Table II. 

TABLE II.  REGIONAL FORECASTING PERFORMANCE (ARIMA) 

Region MAE MSE RMSE MAPE 
TH 18.74 1122.252 33.5 0.281 
N 58.627 9494.415 97.439 0.136 
W 9.032 191.37 13.834 0.354 
E 7.472 100.635 10.032 0.306 
S 17.12 915.768 30.262 0.416 

EN 30.796 2922.903 54.064 0.196 
C 9.952 207.602 14.408 0.33 

 

When evaluating the efficiency of predicting the number 
of infected people by province in the Eastern region using the 
ARIMA MODEL, the results are shown in Table III. 

TABLE III.  PROVINCIAL FORECASTING PERFORMANCE (ARIMA) 

Province MAE MSE RMSE MAPE 
Sa Kaeo 0.82 2.328 1.526 6.6845E+14 

Prachinburi 1.471 4.85 2.202 1.2293E+15 
Chachoengsao 0.886 1.502 1.226 1.0779E+15 

Chonburi 1.46 5.212 2.283 1.5092E+15 
Rayong 6.422 93.388 9.664 0.538 

Chanthaburi 3.377 29.382 5.42 5.9422E+14 
Trat 1.211 3.203 1.79 6.7703E+14 

2) LSTM MODEL: Using the LSTM model to forecast 
and test its performance, the results are presented in Fig.10. 
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Fig. 10. Forecasting results of dengue virus cases in six regions of Thailand 
(2012–2022) using the LSTM model. 

As illustrated in Fig. 10, the LSTM model was applied to 
forecast dengue virus infections across the six regions of 
Thailand. The plots compare actual reported cases with the 
predicted values, highlighting the model’s ability to capture 
nonlinear and fluctuating outbreak patterns. To assess 
forecasting accuracy, the results were evaluated using MAE, 
MSE, RMSE, and MAPE, with detailed values presented in 
Table IV. 

TABLE IV.  REGIONAL FORECASTING PERFORMANCE (LSTM) 

Region MAE MSE RMSE MAPE 
TH 88.189 20413 142.87 0.199 
N 31.402 3853.7 62.078 0.525 
W 13.216 376.21 19.396 0.387 
E 12.284 376.37 19.4 0.561 
S 9.561 168.25 12.971 0.332 

EN 73.924 9623.2 98.098 2.66 
C 39.49 4576.9 67.652 0.256 

When evaluating the efficiency of predicting the number 
of infected people by province in the Eastern region using the 
LSTM MODEL, the results are as shown in the table V. 

TABLE V.  PROVINCIAL FORECASTING PERFORMANCE (LSTM) 

Province MAE MSE RMSE MAPE 
Sa Kaeo 1.412 4.51 2.124 1.3874E+15 

Prachinburi 0.996 1.96 1.4 1.2747E+15 
Chachoengsao 1.51 5.291 2.3 1.2428E+15 

Chonburi 8.232 169.874 13.034 0.64 
Rayong 3.981 44.426 6.665 1.122E+15 

Chanthaburi 1.244 3.792 1.947 8.8414E+14 
Trat 1.05 2.215 1.488 2.1837E+15 

IV. RESULT AND DISCUSSION 
The results show that ARIMA and LSTM models have 

different performance in forecasting the number of dengue 
fever patients in the Eastern Economic Corridor (EEC) and 
different regions of Thailand, considering the MAE, MSE, 
RMSE, and MAPE indicators. 

A. Regional comparison results 
For regional comparison results, we have measured the 

performance of the prediction results with the values of MAE, 
MSE, RMSE, and MAPE as shown in the table VI. 

TABLE VI.  REGIONAL COMPARISON OF MAE (ARIMA VS. LSTM) 

REGION ARIMA:MAE LSTM:MAE 
TH 18.74 88.189 
N 58.627 31.402 
W 17.12 13.216 
E 7.472 12.284 
S 9.032 9.561 

EN 9.952 73.924 
C 30.796 39.49 

TABLE VII.  REGIONAL COMPARISON OF MSE (ARIMA VS. LSTM) 

REGION ARIMA:MSE LSTM:MSE 
TH 1122.252 20412.637 
N 9494.415 3853.719 
W 915.768 376.212 
E 100.635 376.366 
S 191.37 168.251 

EN 207.602 9623.241 
C 2922.903 4576.854 

TABLE VIII.  REGIONAL COMPARISON OF RMSE (ARIMA VS. LSTM) 

REGION ARIMA:RMSE LSTM:RMSE 
TH 33.5 142.873 
N 97.439 62.078 
W 30.262 19.396 
E 10.032 19.4 
S 13.834 12.971 

EN 14.408 98.098 
C 54.064 67.652 

TABLE IX.  REGIONAL COMPARISON OF MAPE (ARIMA VS. LSTM) 

REGION ARIMA:MAPE LSTM:MAPE 
TH 0.281 0.199 
N 0.136 0.525 
W 0.416 0.387 
E 0.306 0.561 
S 0.354 0.332 

EN 0.33 2.66 
C 0.196 0.256 

 

The results from the table show that the ARIMA model 
gives lower error values MAE and RMSE than many regions, 
especially the Eastern and Central regions, indicating its 
suitability for forecasting linear and stationary data. The 
LSTM model also shows better performance in some areas, 
such as the Northern and Southern regions, which have 
fluctuating data patterns and are non-linear. 

B. Provincial-level comparison results in the EEC area 
 Provincial level comparison results, we have measured the 
performance of the prediction results with the values of MAE, 
MSE, and RMSE as shown in the table XI - XII. 

TABLE X.  THE PROVINCE’S MAE VALUE OF ARIMA AND LSTM . 

Province ARIMA:MAE LSTM:MAE 
Sa Kaeo 0.82 1.412 

Prachinburi 1.471 0.996 
Chachoengsao 0.886 1.51 

Chonburi 1.46 8.232 
Rayong 6.422 3.981 

Chanthaburi 3.377 1.244 
Trat 1.211 1.05 

TABLE XI.  THE PROVINCE’S MSE VALUE OF ARIMA AND LSTM . 

Province ARIMA:MSE LSTM:MSE 
Sa Kaeo 2.328 4.51 
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Province ARIMA:MSE LSTM:MSE 
Prachinburi 4.85 1.96 

Chachoengsao 1.502 5.291 
Chonburi 5.212 169.874 
Rayong 93.388 44.426 

Chanthaburi 29.382 3.792 
Trat 3.203 2.215 

TABLE XII.  THE PROVINCE’S RMSE VALUE OF ARIMA AND LSTM . 

Province ARIMA:RMSE LSTM:RMSE 
Sa Kaeo 1.526 2.124 

Prachinburi 2.202 1.4 
Chachoengsao 1.226 2.3 

Chonburi 2.283 13.034 
Rayong 9.664 6.665 

Chanthaburi 5.42 1.947 
Trat 1.79 1.488 

 

From the performance evaluation results table, it can be 
seen that in many provinces, such as Prachinburi, 
Chanthaburi, and Trat, the LSTM model gives lower error 
values than ARIMA, reflecting the potential of LSTM in 
dealing with complex Time Series data, while in some 
provinces, such as Rayong, the ARIMA model still has higher 
accuracy. 

Overall, ARIMA is suitable for linear and uniform data, 
while LSTM is suitable for non-linear and volatile data. This 
finding is consistent with previous research that indicates that 
LSTM is better at learning long-term relationships in data, but 
it is sensitive to parameter settings and requires a large amount 
of data for learning. Appropriate application of both methods 
in each context may improve the accuracy of forecasting and 
epidemic management planning in the EEC area. This shows 
that no single model is best in all contexts. Instead, the choice 
of ARIMA or LSTM should depend on the data characteristics 
and local environment. This finding is essential for future 
policy management and dengue early warning systems. 

V. CONCLUSION AND FUTURE WORK 
This study compared ARIMA and LSTM models for 

forecasting dengue fever cases in Thailand’s Eastern 
Economic Corridor (EEC) using data from 2012–2022. 
Results show that ARIMA provides higher accuracy in 
provinces with stable and linear trends, such as Rayong, while 
LSTM performs better in provinces with more volatile and 
nonlinear patterns, such as Prachinburi and Chanthaburi. 
These findings confirm that no single model is universally 
optimal; instead, model selection should be guided by the 
nature of local data and outbreak dynamics. The comparative 
framework presented here can inform evidence-based public 
health planning and strengthen dengue early-warning systems 
in the EEC, supporting timely interventions and efficient 
resource allocation.  

Future research should prioritize three directions. First, 
hybrid approaches that combine ARIMA, LSTM, or other 
advanced techniques may improve predictive accuracy by 
leveraging both short-term linear and long-term nonlinear 
patterns. Second, integrating exogenous factors—such as 
rainfall, temperature, and socioeconomic indicators—can 
enhance forecasting reliability and provide actionable insights 
for outbreak prevention. Third, developing explainable and 
real-time forecasting platforms will allow policymakers and 
health professionals to better interpret predictions and respond 
rapidly to epidemics. Beyond technical improvement, the 

adoption of sustainable forecasting systems contributes to the 
United Nations Sustainable Development Goals (SDGs), 
particularly SDG 3 on ensuring healthy lives and SDG 11 on 
building resilient, sustainable communities. Embedding such 
systems into long-term health governance frameworks can 
promote resilience, reduce the social and economic costs of 
outbreaks, and ensure preparedness for future vector-borne 
and emerging diseases across Thailand and the ASEAN 
region. 

ACKNOWLEDGMENT 
 The authors would like to express their profound 
appreciation to the Faculty of Informatics and the Faculty of 
Science and Social Sciences, Burapha University, as well as 
the Korea Institute of Science and Technology Information 
(KISTI), for their valuable support and collaboration 
throughout this study. The authors also gratefully 
acknowledge the Faculty of Informatics, Burapha University, 
for the financial support that enabled the presentation of this 
research. IRB 1-080/2566. 

REFERENCES 
[1] World Health Organization, “Dengue and severe dengue,” WHO Fact 

Sheet, 2023. [Online]. Available: https://www.who.int/news-
room/fact-sheets/detail/dengue-and-severe-dengue 

[2] A. Fisher, et al., “Urbanization and dengue transmission: patterns in 
Southeast Asia,” Journal of Tropical Medicine, vol. 12, no. 3, pp. 211–
220, 2024. 

[3] P. Kolambe and S. Arora, “Comparative study of time series models 
for infectious disease forecasting,” International Journal of Data 
Science, vol. 15, no. 1, pp. 33–45, 2024. 

[4] H. Li and K. Law, “Deep learning for epidemic forecasting: a review,” 
Applied Artificial Intelligence, vol. 38, no. 2, pp. 145–162, 2023. 

[5] Y. Jin, et al., “Neural network approaches for time series prediction of 
vector-borne diseases,” IEEE Transactions on Computational Biology 
and Bioinformatics, vol. 22, no. 1, pp. 77–89, 2025. 

[6] J. Mahikul, et al., “Forecasting dengue fever incidence in Thailand 
using ARIMA models,” Asian Pacific Journal of Tropical Disease, vol. 
14, no. 2, pp. 99–108, 2024. 

[7] P. Leelathawornsuk and W. Peanprasert, “Investment dynamics in 
Thailand’s Eastern Economic Corridor,” Asian Economic Journal, vol. 
38, no. 4, pp. 301–319, 2024. 

[8] K. Niyomsilp, “Innovation-driven growth under Thailand 4.0: the role 
of EEC,” Journal of Development Studies, vol. 46, no. 2, pp. 88–104, 
2025. 

[9] K. Niyomsilp, et al., “Eastern Economic Corridor and Thailand 4.0: 
fostering innovation and reducing inequality,” Asian Policy Review, 
vol. 12, no. 3, pp. 77–91, 2020. 

[10] N. Tontisirin and S. Anantsuksomsri, “Land-use transformation in 
Thailand’s Eastern Economic Corridor,” Urban Studies Review, vol. 
59, no. 3, pp. 411–427, 2021. 

[11] C. Tantiwat, “Transportation challenges and policy solutions in the 
Eastern Economic Corridor,” Journal of Transport Policy, vol. 32, pp. 
22–34, 2025. 

[12] Tandfonline, “Infrastructure and logistics development in the Eastern 
Economic Corridor,” Journal of Infrastructure Development, vol. 18, 
no. 2, pp. 199–213, 2024. 

[13] G. Bhunia and S. Ghosh, “Application of ARIMA model for predicting 
dengue cases in India,” Spatial and Spatio-temporal Epidemiology, 
vol. 37, pp. 100–110, 2021. 

[14] X. Wang, et al., “Long Short-Term Memory (LSTM) networks for 
dengue forecasting in Guangzhou, China,” Scientific Reports, vol. 12, 
pp. 1123–1135, 2022. 

[15] S. Chae, et al., “Hybrid ARIMA–LSTM model for dengue fever 
forecasting in the Philippines,” BMC Infectious Diseases, vol. 18, no. 
1, pp. 1–12, 2018. 

[16] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with 
deep recurrent neural networks,” 2013 IEEE International Conference 
on Acoustics, Speech and Signal Processing (ICASSP), pp. 6645–6649, 
2013, doi: 10.1109/ICASSP.2013.663894

 

599


