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Abstract—This paper proposes a mask inspection image en-
hancement method based on the pix2pix architecture to synthe-
size high-magnification images from low-magnification images of
EUYV semiconductor pattern masks. To the best of our knowledge,
this is the first work leveraging generative models to transform
low-magnification EUV mask pattern images into their high-
magnification equivalents. The proposed method improves defect
detection accuracy while reducing the inspection costs associated
with high-resolution imaging.

I. INTRODUCTION

Extreme Ultraviolet (EUV) lithography masks are critical
for patterning next-generation semiconductor devices, and
ensuring these masks are defect-free is essential for chip
yield and performance. Detecting tiny pattern defects on an
EUYV mask typically requires high-magnification imaging (e.g.,
high-resolution scanning electron microscope views) to reveal
fine details that low-magnification scans might miss. However,
capturing high-magnification images across an entire mask is
impractical due to the limited throughput and high cost of spe-
cialized actinic or electron-beam inspection tools. EUV mask
inspection equipment remains extremely expensive, and data
acquisition is limited, as EUV masks cost approximately 3-10
times more than deep ultraviolet (DUV) masks. This creates
a challenge: how to leverage the speed of low-magnification
imaging while still achieving the defect visibility of high-
magnification views.

Recent advances in generative Al offer a potential solution.
Generative models have revolutionized image synthesis and
translation tasks in computer vision. In particular, image-to-
image translation frameworks can learn to transform an input
image into a new image domain, altering resolution or style
while preserving content. Generative Adversarial Networks
(GANs) marked a milestone in this field, enabling realistic
image generation and domain translation [1].

The pix2pix model [2] first demonstrated that a conditional
GAN could effectively map paired images from one domain to
another (e.g., sketches to photos), achieving impressive results.
Since then, numerous GAN-based methods have emerged for
tasks such as super-resolution (enhancing image detail) and
style transfer [3]-[5]. GAN-based approaches, including super-
resolution GANs such as SRGAN [6] and ESRGAN [7],
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can generate high-frequency details that standard interpolation
methods cannot. Diffusion models have recently emerged as
state-of-the-art generative models, offering improved image
fidelity and training stability compared to GANs [8].

For instance, denoising diffusion models and latent dif-
fusion models (LDMs) iteratively refine noise to generate
photorealistic images and have been scaled to very high
resolutions. Cutting-edge diffusion-based systems like Stable
Diffusion [9] and DALL-E 2 [10] achieve remarkable results
but require massive training datasets on the order of billions of
images and extensive computational resources [11]. However,
in specialized domains such as semiconductor mask inspec-
tion, obtaining such large datasets is impractical and costly.
Transformers have also been adapted for generative modeling;
for example, Diffusion Transformers (DiTs) integrated into
diffusion models effectively capture global context for high-
resolution image generation [8]. Nonetheless, these sophisti-
cated architectures tend to be data-intensive and complex to
train, posing significant challenges given the scarcity of EUV
mask training data.

In this work, we address the challenges described above
by leveraging a generative image-translation approach to con-
vert low-magnification EUV mask images into synthetically
generated high-magnification images. By doing so, we aim to
combine the coverage and speed of low-magnification scans
with the detailed visibility of high-magnification scans, thereby
improving defect detection performance. We adopt a pix2pix-
based conditional GAN architecture for this task, rather than
transformer- or diffusion-based models, precisely because our
EUV mask image dataset is limited. The pix2pix frame-
work—with its encoder—decoder U-Net generator and patch-
based discriminator—is particularly well-suited for learning
from relatively small paired datasets [5].

Furthermore, GANs enable the model to synthesize fine
textural details resembling actual high-magnification patterns
through an adversarial loss that encourages outputs indistin-
guishable from true high-magnification images. By training
on a modest number of paired low- and high-magnification
examples, our method learns to super-resolve and enhance
mask images specifically tailored to the characteristics of
EUYV patterns. We hypothesize that utilizing these synthetically
enhanced images in defect analysis can boost the detection of
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Fig. 1: The overall architecture of the proposed algorithm for generating a high-magnification image from a low-magnification

image is presented.

subtle defects that might otherwise be missed at low resolution.

In summary, our contribution is a generative Al-based
approach for EUV mask inspection that predicts high-
magnification images from low-magnification inputs, facilitat-
ing improved defect identification without requiring exhaustive
high-magnification scanning.

II. RELATED WORKS
A. Image-to-Image Translation and Super-Resolution

Image translation using deep generative models has become
a vibrant area of research. Pix2pix introduced the seminal
idea of employing conditional GANs for supervised image-to-
image translation, learning a mapping from an input domain to
an output domain using paired training images [2]. Building on
this, pix2pixHD [12] and other variants extended conditional
GAN (cGAN) [13] translation capabilities to high-resolution
outputs by employing coarse-to-fine generators and multi-scale
discriminators, enabling photorealistic results for large images.

In the field of image super-resolution, SRGAN [6] applied
adversarial training to upsample images, recovering realis-
tic textures unattainable by pixel-wise loss functions alone.
An improved version of SRGAN, ESRGAN [7], introduced
architectural and loss-function enhancements (e.g., Residual-
in-Residual Dense Blocks and a relativistic discriminator) to
produce even more natural image details. These advancements
demonstrated that GAN-based super-resolution can effectively
generate high-frequency details (e.g., sharp edges, surface
textures), making upscaled images perceptually convincing.

However, GANs often suffer from issues such as train-
ing instability and mode collapse, especially when gener-
ating very high-resolution images [14]. This limitation has
prompted exploration into alternative generative approaches,
notably diffusion models. Diffusion probabilistic models [15]
have recently set new standards in image-generation fidelity.
These models generate images by gradually denoising random
noise, thereby avoiding mode collapse by more comprehen-
sively covering the data distribution. Latent Diffusion Models
(LDMs) further improve efficiency by performing diffusion
in a compressed latent space, significantly reducing memory
requirements and processing time while preserving image

quality. Diffusion models have also been applied to image-to-
image tasks. For instance, by conditioning on input images or
embeddings, diffusion models can be guided for tasks such as
style transfer or super-resolution. Saharia et al. [16] demon-
strated diffusion-based super-resolution (SR3), and more re-
cent studies have combined diffusion with transformers for
paired image-translation tasks. The DenoSR method employs
a pretrained diffusion model for zero-shot super-resolution,
effectively enhancing noisy images by progressively refining
high-frequency details through inverse diffusion [17].
Although these approaches achieve impressive results, their
applicability to our problem is limited by data constraints.
Training large diffusion or transformer-based models typically
requires very large and diverse image datasets; for example,
Stable Diffusion was trained on billions of web images.
In contrast, our task addresses a niche data domain—dark-
field images of EUV mask patterns—where only a relatively
small corpus of paired low- and high-magnification samples
is available. This motivates our choice of the pix2pix GAN
framework, which has been shown to perform effectively even
with limited data and can be efficiently trained on a single
GPU within a reasonable timeframe, while still producing
sharp, realistic results through its learned adversarial loss.

B. Generative Models in Semiconductor Inspection

Recent research has explored generative models within
semiconductor inspection contexts. Zhang and Ma [18] de-
veloped a pixel-to-pixel GAN model to accelerate lithography
mask simulations. By incorporating deformable convolutions
and an LSTM module into a pix2pix framework, they achieved
significantly faster prediction of detailed mask diffraction
patterns compared to traditional physics-based simulations.
Their work demonstrates that conditional GAN architectures
can effectively capture complex pattern transformations by
mapping mask layouts to aerial images with high accuracy.

In defect inspection, generative networks have been em-
ployed both for data augmentation and direct defect detection.
For instance, Mohammed and Clarke [19] utilized a condi-
tional GAN for fabric defect inspection, generating synthetic
defective images to augment small training datasets. Their
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model took as input a defect mask and a clean fabric image,
outputting realistic composites with defects, thus increasing
defect variability for model training. This approach signifi-
cantly improved defect recognition accuracy by overcoming
data scarcity. Generative augmentation methods have similarly
been proposed in other industrial inspection contexts to create
examples of rarely encountered defects.

Another related line of research involves using neural
networks to reconstruct or characterize mask defects from
imaging data. Zheng et al. [20] introduced a GAN-driven
framework to infer the 3D profile parameters of buried phase
defects in EUV mask blanks. By feeding the network multi-
angle aerial images of a defect and training it to reconstruct
the defect’s profile, they achieved high-accuracy characteriza-
tion that outperformed certain physics-based methods. Their
use of GAN models underscores the potential of generative
approaches for addressing inverse problems in lithography
inspection.

Our work is inspired by these successes and is, to our knowl-
edge, the first to apply an image-translation GAN for EUV
mask magnification enhancement. Specifically, we focus on
translating low-magnification inspection images into a higher-
magnification domain. This can be viewed as a form of super-
resolution or domain enhancement tailored specifically to
mask inspection. While classic super-resolution research often
deals with natural images or straightforward downsampling
scenarios, the mapping between low- and high-magnification
EUV mask images involves not only higher pixel density but
also distinct noise characteristics and imaging artifacts.

By training on true low/high-magnification image pairs from
real masks, our model implicitly learns to synthesize realistic
fine pattern details (including noise textures) representative of
genuine high-magnification images, thereby producing outputs
that closely mimic actual high-magnification inspections. We
build upon the pix2pix cGAN paradigm, incorporating several
domain-specific adjustments to ensure the generated high-
magnification images are structurally consistent with their
low-magnification inputs. This careful approach prevents the
introduction of false defects while visually resembling authen-
tic high-magnification views. The overall architecture of our
proposed method is illustrated in Fig. 1.

In summary, the related work on generative image transla-
tion and prior applications of GANs in inspection provides a
strong foundation for our research. Our approach merges these
ideas to fill a critical gap in EUV mask inspection—enabling
efficient defect analysis by synthetically zooming in on low-
resolution scans—and contributes a novel application of condi-
tional GANs in semiconductor inspection. The following sec-
tions describe our model architecture and training procedure
in detail, and evaluate the extent to which the generated high-
magnification images improve defect detection performance in
practice.

III. THE PROPOSED METHOD

Fig. 1 illustrates the overall architecture of the proposed
pix2pix-based generative adversarial network (GAN) em-

ployed to synthesize high-resolution EUV mask images from
low-resolution inputs. The generator (G) first transforms the
low-resolution input image into a corresponding synthetic
high-resolution image. Subsequently, the discriminator (D)
evaluates pairs comprising the generated high-resolution image
and the input low-resolution image against pairs of real high-
and low-resolution images. Through adversarial training, the
discriminator learns to distinguish between real and synthe-
sized image pairs, thereby guiding the generator to produce
increasingly realistic high-resolution images. This conditional
adversarial framework enables accurate synthesis of fine de-
tails, significantly enhancing defect detection performance in
EUV mask inspection.

Since low-resolution and high-resolution images were ac-
quired using different objective lenses (with 10x and 50x
magnification, respectively), directly inputting them into the
GAN was impractical due to their dimensional mismatch. To
overcome this challenge, we introduced a preprocessing stage
employing a template matching technique. Specifically, we
aligned the image pairs by identifying corresponding regions
between the low-magnification (10x) and high-magnification
(50x) images, and extracting these matching areas for effec-
tive pairing. This preprocessing step ensured consistent input
dimensions for the GAN, significantly enhancing the reliability
and quality of the synthesized high-resolution images.

Original low-mag
image

The preprocessed
high-mag image

Fig. 2: To verify the preprocessing step for the low-
magnification and high-magnification images, we overlaid
these images.

Fig. 2 illustrates an example of successful alignment be-
tween high-magnification (50x) and low-magnification (10x)
images achieved through template-matching preprocessing.
First, the original high-magnification image was downsampled
to match the dimensions of the low-magnification image.
Subsequently, template matching was employed to accurately
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identify the corresponding region of the high-magnification
image within the low-magnification frame. The yellow bound-
ing box indicates the matched region, clearly demonstrating
precise spatial alignment. This preprocessing step facilitates
consistent image pairing, enabling the GAN model to effec-
tively learn the mapping from low- to high-resolution domains.

IV. EXPERIMENTAL RESULTS

In this study, we employed extreme ultraviolet (EUV)
mask images provided by FST Company to construct our
dataset and evaluate the matching accuracy between low- and
high-magnification image pairs. The low-magnification dataset
consisted of 42 images, each approximately 1 GB in size,
acquired under a broad field of view. For detailed inspection,
we selected 500 regions of interest—comprising both defect
and defect-free areas—and captured the corresponding high-
magnification images using a review-level optical system.

To standardize the input for our matching algorithm, all
500 high-magnification images were downscaled to 200 x
200 pixels. We then extracted the corresponding regions from
the low-magnification images by cropping to the same 200
x 200 dimensions. Ensuring precise alignment between the
two magnification levels was critical; therefore, we combined
conventional template matching with edge-based feature ex-
traction. Specifically, we first identified candidate regions us-
ing normalized cross-correlation, then refined the matches by
aligning prominent edge contours extracted with a Canny filter.
This two-step approach reduced misalignment and improved
pairwise correspondence.

Finally, the assembled dataset of 500 matched image pairs
was partitioned into training and testing subsets using a 7:3
ratio, yielding 350 pairs for model training and 150 pairs for
performance evaluation. This split enabled a robust assessment
of our matching pipeline, ensuring that both defective and non-
defective instances were represented in each subset.

To illustrate both the successful and failure modes of our
image generation pipeline, we present qualitative examples in
Fig.3 and Fig.4. Fig.3 demonstrates that the proposed method
can accurately generate complex and realistic EUV mask
patterns. Two representative error cases are shown in Fig.4.
In each subfigure, the ground-truth high-magnification image
and mask are overlaid, with the generated output displayed in
semi-transparent red.

Fig. 4(a) shows a case where the model correctly recon-
structs one of two adjacent mask patterns (left) but fails to
generate the second pattern (right) in the correct location. The
blue overlay highlights the missing contours on the right-hand
side, indicating that the network sometimes under-represents
less prominent pattern elements when multiple features coexist
within a single crop.

Fig. 4(b) illustrates an error caused by rotational symmetry
in the EUV mask: the model reproduces a pattern that is a
180° rotated version of the ground-truth pattern. Although the
overall shape is preserved, this rotation error results in the
misalignment of defect positions that are dependent on pattern
orientation.

Input GT

Proposed

Fig. 3: The proposed method effectively generates high-
magnification images from low-magnification inputs.

Across our test set, large, well-isolated defects are con-
sistently generated with high fidelity, and defects located
directly on top of mask patterns are generally well reproduced.
In contrast, small defects in pattern-free regions tend to be
omitted or appear blurred in the generated images. Since
the ultimate goal of image synthesis is to facilitate defect
detection—particularly in patterned regions where contrast is
inherently low—the strength of our method lies in enhancing
the visibility of pattern-overlapping defects. We therefore
anticipate that combining the generated outputs for pattern-
rich areas with the original imagery for pattern-free zones will
yield the most robust overall defect detection performance.

V. CONCLUSION

This paper presents the first application of a pix2pix-based
generative model for synthesizing high-magnification extreme
ultraviolet (EUV) mask images from low-magnification cap-
tures. We introduce a two-step matching pipeline that com-
bines normalized cross-correlation template matching with
edge-based contour refinement to precisely align low- and
high-magnification image pairs, thereby producing high-
quality training data for our pix2pix network. Experimental
results show that our method faithfully synthesizes defects
located on complex EUV mask patterns—defects that are
nearly indistinguishable in the original low-magnification im-
ages—and that the generated high-magnification outputs make
these defects readily detectable. This capability is expected
to enable reliable identification of EUV pattern-overlapping
defects that would otherwise evade detection under standard
inspection conditions.
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(a) Error image 1

(b) Error image 2

Fig. 4: Representative error cases in generated EUV mask
outputs: (a) One pattern is correctly generated, while the
adjacent pattern is missing. (b) A pattern is generated with
a 180° rotation error.
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