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Abstract—In this work, we propose an effective multi-
label semantic segmentation framework for Bird’s Eye
View (BEV) perception. While existing BEV frameworks
typically employ a separate model for binary segmen-
tation of each semantic class—achieving state-of-the-art
performance per class—this design is impractical for real-
world autonomous driving applications. A more feasible
solution for deployment demands a single model capable of
performing multi-label or multi-class segmentation across
multiple object categories. To this end, we introduce two
key strategies that enhance segmentation quality without
modifying the architecture of existing BEV models. First,
we incorporate multi-class prediction to capture inter-
class hierarchies, allowing the model to learn dependencies
between semantic categories such as roads, vehicles, and
pedestrians. This improves semantic reasoning and bound-
ary delineation, especially in spatially overlapping regions.
Second, we propose a spatially-aware weight adjustment
(SAWA) that emphasizes rare object zones on the BEV map.
This addresses the inherent class imbalance and spatial
sparsity of BEV segmentation tasks.

Index Terms—Bird’s Eye View, Semantic Segmentation,
Autonomous Driving, Class Imbalance

I. INTRODUCTION

A Bird’s Eye View (BEV) map represents the sur-
rounding road environment from a top-down perspective,
centered on the ego-vehicle. Due to its comprehensive
360-degree global context, the BEV map is a critical rep-
resentation for autonomous driving and is widely utilized
in downstream tasks such as 3D object detection and
segmentation [1]-[3]. Research on BEV map generation
has largely followed two main paradigms. The first is the
LSS-based approach, which originates from the pioneer-
ing Lift-Splat-Shoot (LSS) framework [4]. The second
is based on transformers or query-driven architectures,
often referred to as DETR-based methods [5].

LSS-based approaches rely on explicit depth estima-
tion from images and employ a two-stage “lift and splat”

pipeline. Specifically, 2D image features are first lifted
into a 3D frustum volume, and then splatted onto a
2D BEV plane [4]. These methods are typically fast
and computationally efficient. However, they suffer from
limited performance due to their dependence on the
accuracy of explicit depth estimation [2], [3], [6].

In contrast, DETR-based methods leverage trans-
formers to model 2D image features more effec-
tively, thereby achieving significantly improved accu-
racy without requiring explicit 3D scene construction
or depth estimation [3], [7]. Despite these advantages,
such approaches remain computationally expensive and
resource-intensive [2], [7], [8].

While BEV perception models have continued to
advance, most existing methods focus solely on binary
segmentation for individual classes. This design choice
allows optimal segmentation performance per class but
leads to inefficiencies, as each model is restricted to
recognizing a single class. Although this issue could
be mitigated by adapting the model head for multi-class
segmentation, such modifications often result in a severe
degradation of per-class performance.

To address this limitation, we propose a multi-label
semantic segmentation framework tailored for BEV per-
ception. Specifically, our approach integrates multi-class
prediction to model the inter-class hierarchy among driv-
able area, vehicle, and pedestrian classes, enabling the
network to learn their semantic dependencies and spatial
relationships. In addition, we introduce a spatially-aware
weight adjustment (SAWA) that modulates the loss con-
tribution of each region based on the presence of rare
objects, thereby mitigating the effects of class imbalance
and improving segmentation accuracy in critical areas.
The contributions of this study are summarized as fol-
lows:
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Fig. 1. The overall architecture of our approach for multi-label BEV segmentation. The multi-class segmentation head head,y1¢; is added to a
standard view transformer-based BEV model without altering the architecture. Subsequently, the SAWA is applied to the multi-class prediction
branch through the loss Lsawa. This mechanism operates by assigning higher weights to patches that contain rare objects, where the BEV space

is pre-divided into k X k patches based on the ground-truth BEV map.

e We propose an inter-class hierarchical modeling
approach that leverages the semantic dependencies
among classes to improve segmentation perfor-
mance. This is implemented via a multi-class pre-
diction branch that captures the structural hierarchy
across classes in the BEV space.

o We introduce a spatially-aware weight adjustment
strategy that adjusts the training focus to spatial
regions containing rare objects on the BEV map.
This mitigates the effects of class imbalance and
enhances accuracy in semantically important areas.

o We achieve noticeable performance improvements
in the multi-label segmentation task with only the
addition of a simple loss function without modify-
ing the structure of the existing model.

II. RELATED WORK
A. LSS-based BEV Transformation

Lift-Splat-Shoot (LSS) [4] lifts each input image into a
3D frustum based on discretized depth distributions and
then projects (splats) it onto the BEV plane. FIERY [9]
extends this formulation by incorporating temporal in-
formation to perform A probabilistic future prediction
of the BEV. BEVDet [10] proposes a modular end-
to-end framework that efficiently detects 3D objects
using a BEV encoder and a CenterPoint-based head.
BEVNeXt [7] presents a modernized dense BEV frame-
work that integrates depth estimation via a conditional

random field (CRF) module and performs long-term
temporal aggregation through the Res2Fusion module.

B. DETR-based BEV Transformation

DETR [5] introduces a transformer-based object de-
tection method using object queries for 2D images,
which has inspired the development of DETR-based
BEV transformation approaches [1], [2], [11]-[13].
DETR3D [11] proposes a multi-view 3D object detection
framework by projecting 3D queries onto the 2D image
plane. Subsequent models [1], [2], [12], [13] further
enhance performance by incorporating 3D positional
embeddings. CVT [2] and PointBEV [3] address the
high computational and memory demands that limit the
deployment of DETR-based BEV models, offering more
efficient alternatives for BEV perception.

Although these prior works have shown promising
performance, they are fundamentally limited to single-
label binary segmentation tasks for individual classes.
When extended to multi-label segmentation, perfor-
mance often degrades significantly. To overcome this
limitation and build more practical BEV perception
models for real-world scenarios, we propose a new
multi-label segmentation methodology tailored for BEV
frameworks.

C. Loss Functions for the Class Imbalance Problem

Focal loss [14] was originally introduced to address
extreme class imbalance in dense object detection tasks
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by down-weighting well-classified examples and focus-
ing training on hard negatives. It has since been widely
adopted in various segmentation tasks, especially where
rare classes are underrepresented. Generalized focal
loss [15] extends focal loss to multi-class segmentation
settings by incorporating both classification and localiza-
tion uncertainties. Asymmetric loss [16] penalizes false
negatives more heavily than false positives to address
the costs of asymmetric misclassification, particularly
in the medical and semantic segmentation domains.
Dice loss [17] directly optimizes the overlap between
the predicted and ground-truth masks. This makes it
especially suitable for scenarios involving small or sparse
foreground classes in segmentation tasks.

Loss functions designed to address class imbalance,
such as focal loss, have shown clear performance im-
provements for sparse object categories. However, these
methods are limited to pixel-level comparisons only. In
the context of BEV perception for autonomous driving,
it is crucial not only to classify each BEV pixel correctly
but also to capture the spatial context and relationships
among surrounding objects [18]. Therefore, a loss func-
tion that accounts for the spatial structure of the BEV
space and inter-object interactions is necessary.

I1I. PROPOSED METHODOLOGY

In this paper, we introduce the spatially-aware weight
adjustment strategy through the multi-class prediction to
address the challenge of class imbalance in the multi-
label BEV segmentation task. The overall architecture
is illustrated in Fig. 1. Without modifying the existing
View Transformer (VT) responsible for projecting multi-
view images to the BEV space, we simply append a
single segmentation head for multi-class prediction at the
final stage of the model. To further improve segmentation
performance for rare classes such as pedestrians, while
minimizing performance degradation for more frequent
classes, we apply the proposed weighting scheme to the
loss map. The new auxiliary loss is based on the focal
loss. The general focal loss for each pixel for multiple
classification is defined as follows:

Lfocal(z7y) = 70‘3}(1 7py(1.))’Y log(py(:r)) (1)

py denotes the predicted probability for the ground-
truth class y, typically obtained using the softmax func-
tion. A balancing factor o, that adjusts the importance
of class, used to mitigate class imbalance. The focusing
parameter < reduces the loss contribution from well-
classified examples and emphasizes hard examples.

We extend this formulation to a spatially-aware weight
adjustment objective that facilitates the understanding of
spatial context. Fig. 2 shows the process. For this, we
divide the BEV ground-truth map of size n x n = N

(a) (b)

Fig. 2. Illustration of the SAWA process. The BEV map (a) is
first divided into k x k patches. Subsequently, the higher weight is
assigned to the corresponding patches in the loss map that spatially
align with BEV regions containing rare classes, such as the red points
representing pedestrians, as illustrated in (b). This strategy balances
class importance while preserving generalization.

into k X k non-overlapping patches. A spatially-aware
weight wy,;) is applied to each pixel 7 that belongs to a
patch k(i) containing at least one pixel of a rare class:

A, if a rare class exists
W(5) = { (2

1.0, otherwise

Therefore, the average loss for the entire map is
defined as follows:

Lsawa = L > Wi - Liocar (i, i) 3)
INTi=
Lsawa denotes the spatially-aware weight adjustment
loss. We integrate this with existing C' class-wise binary
focal loss objectives Lpinary to obtain the final total loss
ETotal:

c
Lrowr = Y _ Loinary () + Lsawa “4)

j=1

Unlike pixel-wise weighting methods that may cause
overfitting to specific pixels or classes, our formulation,
which integrates Lyinary(j) and Lgawa, considers both
global and local context in the BEV space. This balances
the importance of rare object regions while prevent-
ing excessive overfitting, thus enhancing generalization
across all classes. We adopt 2.0 for the weight factor .

IV. EXPERIMENT
A. Dataset

All experiments are conducted on the nuScenes [19]
dataset, a large-scale benchmark for autonomous driving.
This dataset comprises 1,000 driving scenes collected
from Boston and Singapore, covering diverse weather
and lighting conditions, as well as a wide range of
driving scenarios. The 1,000 scenes are divided into 700
for training, 150 for validation, and 150 for test set. Each
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scene spans approximately 20 seconds and is composed
of image frames recorded at 2Hz intervals (i.e., every 0.5
seconds), resulting in a total of approximately 40,000
annotated samples. The images are captured from 6
synchronized, monocular cameras mounted around the
ego-vehicle to provide a full 360-degree surround view.
In addition, the dataset includes 3D point cloud data
collected from one LiDAR and 5 radars, enabling mul-
timodal perception tasks.

B. Implementation Details

We perform semantic segmentation for three classes,
drivable-area, vehicle, and pedestrian. Following pre-
vious work [2], [4], we define the BEV map as a
grid of size 200 x 200, where each pixel represents a
0.5 x 0.5m area. All input images are resized and top-
cropped to a resolution of 224 x 480. No additional
data augmentation is applied to the images. For baseline
comparisons, we adopt CVT and BEVFormer [1] as
representative models. To ensure consistency, we use
the same optimizer and scheduler—AdamW [20] and
OneCycleLR [21]—for both. For CVT, we follow the
original configuration, using a learning rate of 4 x 1073
and a weight decay of 1 x 10~7, training for 30 epochs.
BEVFormer is trained similarly to the original setup,
with a learning rate of 2 x 10™* and a weight decay
of 1 x 10% for 24 epochs. The loss weights for the
three classes (drivable-area, vehicle, and pedestrian) are
set to 1, 8, and 32, respectively. These weights are
applied to both Lyinary and Lsawa. Each experiment is
conducted three times using different random seeds, and
the mean performance across runs is reported as the final
result. All experiments were performed on the nuScenes
validation dataset.

TABLE I
ToU(%) COMPARISON OF MULTI-LABEL BEV SEGMENTATION ON
THE NUSCENES VALIDATION DATASET.

Method Drivable Vehicle Pedestrian mloU
CVT 76.8 31.7 10.8 39.8
+ LsAwA 77.0 323 12.0 40.4
BEVFormer 78.6 33.8 11.0 41.1
+ LsawA 78.6 34.5 11.8 41.6

TABLE II

10U (%) COMPARISON OF MULTI-LABEL BEV SEGMENTATION FOR
THE DYNAMIC OBJECTS WITH VISIBILITY FILTERING ON THE
NUSCENES VALIDATION DATASET.

Method Vehicle Pedestrian mloU
CVT 33.4 11.5 22.5
+ ﬁSAWA 34.2 12.7 23.5
BEVFormer 36.0 114 23.7
+ ESAWA 36.8 12.2 24.5

581

C. Experimental Results

We compare our methodology with baseline models.
As shown in TABLE I, introducing our proposed loss
function, Lsawa into both CVT [2] and BEVFormer [1]
models improves multi-label semantic segmentation per-
formance. Our approach continues to be effective even
when visibility filtering is applied during training and
evaluation, focusing on vehicles and pedestrians with
less than 40% visibility (see TABLE II). All experimen-
tal results are the mean values of three experiments.
Our proposed method appears to improve the BEV
segmentation performance for all classes.

Notably, although the Lsawa is applied based on
the presence of pedestrians, the performance of other
classes also improved or maintained. This is attributed
to the patch-wise emphasis, which highlights not only
the pedestrian regions but also neighboring objects that
frequently co-occur or interact with them. Unlike pixel-
or class-specific weighting schemes, this approach en-
courages the model to better capture the local and spatial
context on the BEV map.

TABLE III
TIoU(%) COMPARISON OF CVT MODELS BY VARYING NUMBER OF
PATCHES.
Method Number of Drivable Vehicle Pedestrian
Patches
CVT - 76.8 31.7 10.8
+ LSAWA 5%5 76.7 32.0 11.9
+ LsAawA 8x8 76.8 31.9 11.5
+ Lsawa | 5%5 or 8x8 77.0 323 12.0
TABLE IV

10U (%) COMPARISON OF CVT ACCORDING TO MULTI-CLASS
PREDICTION (MULTI-C) AND SAWA. THE BEST PERFORMANCE IS
HIGHLIGHTED IN BOLD, AND THE SECOND-BEST IS INDICATED
WITH AN UNDERLINE.

Method Multi-C  SAWA  Drivable Vehicle Pedestrian
CVT 76.8 31.7 10.8
CVT v 77.0 322 11.5
CVT v v 77.0 323 12.0

D. Ablation Study

We conducted an ablation study to explore the optimal
number of patches. Table III shows that randomly mixing
5x5 and 8x8 patches with a 50% probability yields
the most effective performance across different classes
for a BEV map of size 200x200. This mixing method
can be interpreted to provide richer and more varied
emphasis compared to the monotonous weights provided
by a single strategy.

In TABLE IV, Multi-C means the case of adding only
the multi-class segmentation head for the auxiliary loss



TABLE V
10U (%) COMPARISON BETWEEN TWO TYPES OF AUXILIARY LOSSES. WE PERFORM A COMPARISON OF THE CONDITIONS UNDER WHICH
PEDESTRIANS WERE EXCLUDED FROM EACH AUXILIARY LOSS.

Classes used for auxiliary loss . . .
Method ‘ Drivable  Vehicle  Pedestrian Drivable Vehicle Pedestrian
CVT 76.8 31.7 10.8
CVT+Binary v v 76.9 31.6 9.3
CVT+Multi v v 76.9 321 10.8

without SAWA. Interestingly, even this alone leads to
a performance improvement. This observation suggests
that the multi-class objective implicitly encourages class-
specific exclusivity in latent space, which can help
reduce classification ambiguity in multi-label task.

To analyze this in more detail, we conduct an ablation
study in which the multi-class segmentation head is
replaced with the binary segmentation head for each
class. Table V shows the results. The +Binary denotes
that the auxiliary loss, which is the same as the ex-
isting binary segmentation loss, is added. Therefore,
The CVT+Binary means that two binary segmentation
are performed on the drivable-area and the vehicle. On
the other hand, only one existing loss is used for the
pedestrian. In the experiment where auxiliary losses were
applied only to drivable-area and vehicles, the +Binary
does not meaningfully improve the performance for both
classes, but significantly decreases the performance for
pedestrian. This shows that simply performing the same
binary segmentation does not improve the predictive
performance for that class, but rather leads to perfor-
mance degradation of other classes that have not been
emphasized.

In contrast, the +Multi significantly improves the
performance on the vehicle class, while preserving the
performance on the pedestrian even without any aux-
iliary loss applied to it. These results suggest that the
multi-class objective captures hierarchical relationships
between semantic classes—such as the fact that roads
are always beneath vehicles and can be occluded by
them—which conventional binary models fail to account
for. This structured formulation helps to overcome the
limitations of binary-based approaches while properly
regularizing with the binary objectives applied in par-
allel.

V. CONCLUSION

In this paper, we presented a new auxiliary loss design
for multi-label BEV semantic segmentation. Specifically,
we introduced the spatially-aware weight adjustment
via multi-class prediction. This novel auxiliary objective
effectively emphasizes the local regions containing rare
classes, without hindering global contextual focus. Even
this does not require a change in the existing BEV
perception structure.

In addition, we demonstrated through experiments that
it is more effective to perform multi-class segmentation
together on multi-label binary segmentation task. This is
because multi-class prediction captures the structural hi-
erarchy between classes such as drivable-area, vehicles,
and pedestrian, regularizing to construct a more realistic
BEV space.

Through comprehensive experiments on the nuScenes
dataset, we demonstrated that our method consistently
improves segmentation accuracy across all object cate-
gories. These results offer a simple yet robust extension
to existing BEV segmentation frameworks.
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