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Abstract—The direction of incoming waves is a primary force
driving coastal erosion, dictating the sediment transport patterns
that shape shorelines. Accurate estimation of this parameter is
therefore essential for effective coastal management. This paper
proposes a robust method for estimating wave direction from
high-resolution satellite image patches. The approach utilizes
texture analysis based on Gabor filters to identify dominant
wave crest orientations, with preprocessing enhanced by contrast
limited adaptive histogram equalization (CLAHE). We evaluate
three orientation strategies: a baseline standard detection, a
high-precision two-stage refinement, and an interpolation-based
refinement. The methodology is first validated on a synthetic
benchmark image with a known ground truth to establish base-
line performance, and then applied to real-world coastal imagery
from Thailand. Experiments show that refinement strategies,
particularly the two-stage method, significantly improve accuracy
in ideal conditions and deliver stable, interpretable estimates
on real-world data. On the synthetic benchmark, the two-
stage refinement achieved a low mean absolute error (MAE) of
0.234°, while on real-world coastal imagery, the interpolation
refinement demonstrated strong performance with an MAE of
12.95°. Ultimately, this method provides a scalable, non-intrusive
tool for analyzing nearshore wave behavior, while emphasizing
that optimal results depend on consistent preprocessing and
parameter tuning.
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I. INTRODUCTION

Coastal erosion refers to the process by which shorelines are
gradually eroded due to natural forces such as waves, currents,
tides, and wind, as well as human-induced activities, such as
coastal development and sand mining [1], [2]. In Thailand, this
phenomenon has become increasingly significant, particularly
along low-lying, sediment-rich coasts such as those of the Gulf
of Thailand and the Andaman Sea [3], [4]. A recent 35-year
analysis has further highlighted the critical rates of shoreline
change in the upper Gulf of Thailand, underscoring the urgent
need for advanced monitoring techniques [5].

The impacts of coastal erosion extend beyond physical land
loss, affecting both local economies and communities. Coastal
infrastructure, tourism, and agriculture suffer damage, while
the displacement of residents and the degradation of natural
ecosystems worsen their socio-economic vulnerability [6]. For
instance, in areas like Bangsaen Beach and Songkhla Lake,
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erosion has led to the loss of recreational spaces and reduced
safety due to dangerous rip currents [2], [7].

To mitigate these effects, various protection strategies have
been implemented, including hard structures such as seawalls,
breakwaters, and groins, as well as soft measures like beach
nourishment and mangrove planting [6], [8]. These protective
structures aim to reduce wave energy and sediment transport,
thus stabilizing the shoreline [4], [8].

However, while these interventions can temporarily slow
erosion, they are not always successful in the long term and
can sometimes cause unintended negative consequences. For
example, installing breakwaters can shift erosion to adjacent,
unprotected areas or interfere with natural sediment flows [2],
[6]. Even after such structures are built, studies still report
ongoing shoreline retreat in various locations [7].

This reveals the need for more adaptive and informed
coastal management strategies. To improve the effectiveness of
protection and prevention measures, it is essential to study the
underlying causes of coastal erosion, particularly the dynamic
interactions between physical and environmental forces [2],
[3]. Key factors include wave direction and height, wind, tides,
sediment supply, and coastal currents [1], [2].

Wave direction, in particular, plays a critical role in de-
termining sediment transport patterns and beach morphology
[1], [9]. However, although several Thai studies use satellite
images to analyze coastal changes and morphology. There
is a noticeable gap in the literature when it comes to di-
rectly estimating wave direction from satellite imagery [3],
[4], [6]. Current approaches primarily use satellite data to
observe historical shoreline shifts rather than infer real-time
hydrodynamic parameters like wave direction.

Therefore, to enhance the ability to predict and manage
coastal erosion in Thailand, there is a compelling need to
explore methods that can estimate wave direction directly from
satellite images. Such approaches would enable more efficient
and large-scale monitoring of coastal dynamics and support
the development of better-informed protective strategies.

Traditional in-situ instruments for wave measurement, such
as moored buoys and acoustic doppler current profilers (AD-
CPs), are prohibitively expensive and provide only sparse,
point-based data. Consequently, they fail to capture the critical
spatial dynamics of nearshore wave fields, leaving large coastal
areas unmonitored [10]-[12].

Therefore, this paper proposes a novel approach to estimate
wave direction directly from satellite imagery, addressing
the current gap in Thai coastal erosion studies. This study
aims to enhance the understanding of wave-induced sediment
transport mechanisms. The proposed solution adapts the local
gradients method introduced by Koch, Originally designed
for wind direction retrieval from synthetic aperture radar
(SAR) imagery [13]. This technique calculates local image
gradients and derives wind-aligned features based on the most
frequent gradient orientations. By modifying and optimizing
this algorithm, we aim to estimate the wave direction instead
of the wind direction, using high-resolution satellite imagery.
Our approach is also adapted from studies that utilize optical

imagery for wave parameter estimation [14], providing a
complementary perspective to SAR-based methods [15], [16].

The challenge of coastal erosion is not unique to Thailand;
it is a pressing issue for many maritime nations in the ASEAN
region that share similar coastal characteristics. Recognizing
this shared challenge and the potential for developing trans-
ferable monitoring techniques, this research was initiated as
part of a collaborative project among several ASEAN member
states and Japan, under the ASEAN IVO framework.

II. DATASETS PREPARATION

To establish a baseline and validate the intrinsic accuracy
of our proposed methods under ideal conditions, a synthetic
benchmark image, named ‘“synthetic grid benchmark,” was
programmatically generated. The image has dimensions of
1952% 1952 pixels and is composed of an 8§x8 grid of cells,
each 244x244 pixels. Each cell contains a clear, noise-free
pattern of parallel lines simulating ideal wave crests with a
precisely known orientation. This synthetic dataset provides
an absolute ground truth, allowing for a rigorous evaluation of
each method’s performance without confounding factors from
environmental noise or image artifacts, as shown in Fig. 1.

For real-world application, high-resolution satellite images
of the coastal region along Chaloem Burapha Chonlathit road
(Bang Kachai, Laem Sing, Chanthaburi) were captured using
Google Earth Pro. Each image was taken from a top-down
perspective aligned to true north, with an eye altitude varying
between 600 meters and 1000 meters to balance detail and
coverage. Images were exported at 8K resolution to maintain
visual clarity.

To facilitate localized analysis, the real-world satellite image
was divided into non-overlapping 244x244 pixel patches,
resulting in a total of 403 patches for analysis. This process
allowed for focused inspection of real-world wave patterns.

Ground truth was established for both datasets. For the
“synthetic grid benchmark” image, the ground truth direction
for each grid cell is known by design. An example of the
ground truth values is illustrated in Fig. 2.

For the real-world patches, where in-situ measurements
were unavailable, a reference ground truth was established
through manual annotation in GIMP. A line was drawn per-
pendicular to the dominant, visually identifiable wave crests
in each patch, and the resulting angle relative to the vertical
axis was recorded. While acknowledging the potential for
subjective interpretation, this approach provides a necessary
baseline for evaluating the algorithm’s performance. To ensure
consistency, a single annotator performed all labeling follow-
ing a standardized protocol. A few ground truth examples are
shown in Fig. 3.
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Fig. 1. Example portion (i.e., 4x8 grids) of the full 8x8 synthetic grid
benchmark image used for validation.
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Fig. 2. Visualization of the ground truth angles for an example portion of
the synthetic grid benchmark. Each color-coded cell represents the exact, pre-
defined orientation for the corresponding area shown in Fig. 1.

Fig. 3. Examples of the manual ground truth annotation on real-world
imagery. The line represents the reference wave direction, drawn perpendicular
to the visually dominant wave crests.

III. PROPOSED METHOD

To estimate wave direction from the prepared image patches,
we propose a robust methodology based on texture analysis
using Gabor filters. This approach is designed to identify
the dominant orientation of periodic patterns, such as wave
crests, within each patch. The workflow includes patch-level
preprocessing, multi-stage orientation analysis, and a dynamic
confidence check to ensure the reliability of the estimates, as
detailed in the following subsections.

A. Patch Preprocessing

Each image patch undergoes a two-step preprocessing se-
quence to enhance the visibility of wave patterns for subse-
quent analysis.

The input color patch is first converted to a single-channel
grayscale image. This step simplifies the analysis by focusing
on luminance variations, which correspond to the alternating
crests and troughs of the wave field.

Second, to accentuate subtle wave features that may be
obscured by poor lighting or low contrast, contrast limited

adaptive histogram equalization (CLAHE) is applied. Unlike
global equalization, CLAHE operates on local regions (e.g.,
8x8 pixel tiles), preventing the over-amplification of noise
while effectively sharpening the definition of wave crests.
The utility of CLAHE for enhancing features in maritime
optical satellite imagery has been validated in recent studies
for applications such as ship detection [17].

B. Gabor Filter Bank Generation

The use of Gabor filters for texture analysis is well-
established in remote sensing applications, such as sea-ice
classification and hyperspectral image analysis [18], [19]. The
core of our orientation analysis is a bank of Gabor filters.
Gabor filters are widely recognized for their effectiveness in
texture analysis and feature extraction due to their ability to
capture frequency and orientation information locally [19],
[20]. The mathematical form of a 2D Gabor filter in the spatial
domain is given by the following equations.

9(@,y; A, 0,9, 0,7) =exp(a) x cos(B), (D
2% 4 2y
Q= T 952 (2)
and
:L,/
B ZQWX + 9, (3)
where ' = zcosf + ysinf and 3y = —xsinf + ycosh, A is

the parameter of the wavelength, @ is orientation, v is phase
offset, o is standard deviation of the Gaussian envelope, and
v is spatial aspect ratio.

A filter bank containing 32 Gabor kernels is generated,
with each kernel tuned to a specific orientation 0, for k €
{1,...,32}, spaced linearly between 0° and 180°. The filter
parameters are selected based on empirical observation and
established practices. The wavelength (\) is set to 15 pixels
to match the approximate spatial frequency of the observed
wave crests. The spatial aspect ratio () is set to 0.6, creating
an elliptical filter shape effective for detecting elongated wave
lines. This choice is supported by some systematic studies, by
Bianconi and Ferndndez [21], which found that lower ~y values
(near 0.5) improve classification performance. The phase offset
(1) is set to 0 to generate an even-symmetric filter optimal
for detecting wave ridges. The standard deviation (o) is set
proportionally to A, a choice consistent with the optimal ratio
(o/\ = 0.56) for effective feature detection [20].

C. Wave Crest Orientation Estimation

For each preprocessed patch I(z,y) at a pixel coordinate
(z,y), a response map is generated by convolving the patch
with each Gabor kernel g; from the filter bank. The dominant
orientation is found by identifying the filter that produces the
maximum mean response magnitude, M., calculated over all
N valid pixels in the patch.

_ 1
Mk:NZ‘I(x7y)*gk(x7y)|7 (4)

z,y
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where * denotes the 2D convolution operation, and N is the
total number of pixels of the image patch.

The optimal orientation is given by O = 05, The index
k is found by maximizing the mean response magnitude, i.e.,
k= arg maxy, M},. To improve precision, one of the following
three refinements is used.

1) Standard Detection: This baseline approach serves as
the simplest and most computationally efficient method. It
identifies the single Gabor filter from the bank of 32 that elicits
the maximum mean energy response (M}). The orientation of
this specific filter is then directly assigned as the wave crest
orientation for the patch. The primary limitation of this method
is its precision, which is inherently capped by the angular
resolution of the filter bank, i.e., 180° / 32 filters = 5.625°.
It is best suited for applications requiring a rapid, coarse
assessment of the wave field where high angular precision is
not the main objective.

2) Two-Stage Refinement: This method employs a hierar-
chical coarse-to-fine search strategy to balance precision with
computational cost. In the first stage, the standard detection
method is used to identify a coarse, approximate orientation.
In the second stage, the analysis zooms in on this angle by
generating a new, high-resolution bank of 32 Gabor filters
focused only within a narrow angular window, i.e., £5.625°,
around the coarse direction. The final orientation is determined
from the peak response in this second, fine-grained search.
This approach significantly increases angular precision by
concentrating computational effort where it is most needed.

3) Interpolation-based Refinement: This technique offers
a highly efficient path to sub-resolution precision by using
mathematical estimation. It operates on the assumption that
the true orientation peak lies between the discrete angles of the
initial filter bank. After the standard method identifies the filter
with the peak response (M. ) and its two immediate neighbors
(Mj,_, and My ), a quadratic polynomial equation is fitted to
these three points. The analytical maximum of this polynomial
equation is calculated using the following equation, yielding
a more precise orientation estimate. This technique, known as
parabolic interpolation, allows for sub-resolution accuracy by
estimating the true peak of the response function between the
discrete angular steps of the filter bank.

_1 M;_, - Mfc+} )
2 My, —2M];,+Mf€+1

é
-1
where ¢ is the correction factor, which estimates the offset
from the sidcrete angle of the winning filter to the true peak
of the response curve, and k is the index of the Gabor filter that
produced the maximum mea response from the initial bank.

The refined crest orientation is then calculated based on
the adjusted index k + 6. This method achieves precision
comparable to the two-stage approach with minimal additional
computational overhead.

D. Dynamic Confidence Thresholding

To filter out unreliable estimates from noisy or featureless
patches, a dynamic confidence threshold 7" is employed. This

threshold is calculated based on the global maximum response
across the entire source image, ensuring it adapts to varying
image conditions.

T:f X Ia:n?}lg |Ifull(xay) *gk(xvy”? (6)

where f is a fractional factor, empirically set to 0.08, and Irun
is the full, unpatch source image. Patches where M} does not
exceed 1" are considered low confidence.

E. Wave Direction Calculation

The analysis yields the orientation of the wave crests, Ocres-
The direction of wave propagation, fy,ye, is orthogonal to the
crest line. Therefore, the wave direction is determined by the
equation Gyaye = Ocrest + 90°.

IV. EXPERIMENT AND EVALUATION

The experimental process was designed in two stages. First,
we validated the performance of the three proposed methods
(standard, two-stage, and interpolation) on the synthetic grid
benchmark images to determine their intrinsic accuracy under
ideal, noise-free conditions. Second, the methods were applied
to the real-world dataset from he coastal region along Chaloem
Burapha Chonlathit road to evaluate their robustness and
practical applicability.

For the quantitative evaluation on the synthetic benchmark,
performance was assessed using several standard metrics,
including mean absolute error (MAE), root mean square error
(RMSE), and mean percentage error (MPE). Accuracy is
specifically defined as the complement of the MPE, calculated
as 100% —MPE. Additionally, to gauge the methods’ ability to
achieve high-precision results, we report the maximum error
(the single worst-case deviation observed), the number of exact
and near matches (error < 0.1°), and the percentage of grid
cells with a difference < 0.5°.

For the real-world dataset, where conditions are more vari-
able, evaluation focused on practical robustness. In addition to
MAE and RMSE, we report the percentage of image patches
with an estimated direction falling within +10°, within +20°,
and within £30° of the annotated ground truth. This set of
metrics provides a practical measure of the algorithm’s relia-
bility for applications where a certain tolerance is acceptable.

A. Validation on Synthetic Benchmark

On the synthetic grid benchmark image, where the ground
truth is perfectly known, the methods were evaluated using a
comprehensive set of metrics. As shown in Table I, the two-
stage method demonstrated exceptional performance, yielding
the lowest MAE of 0.234° and the highest accuracy of 98.29%.
It also correctly identified the exact orientation in two grids
and had 14 near-perfect-match grids (i.e., the error < 0.1°).
This confirms that, under ideal conditions, the hierarchical
search strategy is superior for achieving high-precision results.
The interpolation method also performed well, while the
standard method, as expected, had the highest error due to
its limited angular resolution.
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TABLE I
PERFORMANCE METRICS ON THE SYNTHETIC GRID BENCHMARK.

Standard Two-Stage Interpolation
MAE (°) 1.453 0.234 0.432
RMSE (°) 1.676 0.283 0.756
MPE (%) 11.22 1.71 2.28
Accuracy (%) 88.78 98.29 97.72
Max Error (°) 2.980 0.600 2.970
No. of Exact Matches 0 2 1
No. of Near Matches (< 0.1°) 2 14 16
Difference < 0.5° (%) 17.19 93.75 81.25

Examples of wave direction estimation using the two-stage
refinement method are shown in Fig. 4.

Fig. 4. Wave direction estimation results from the two-stage refinement
method, illustrated on an 4x8 portion of the full 8 x8 synthetic grid bench-
mark for clarity. Each red line represents the algorithm’s high-precision output,
demonstrating its performance under ideal, noise-free conditions.

B. Application to Real-World Imagery

When applied to the 403 patches of the Chaloem Burapha
Chonlathit road dataset, the performance reflects the chal-
lenges of real-world conditions, including noise and variable
wave patterns. The results are summarized in Table II. While
the absolute error values are higher than on the synthetic data,
the trend remains consistent, i.e., the refinement methods (two-
stage and interpolation) outperform the standard approach. The
interpolation method yielded the lowest overall error with an
MAE of 12.95°, demonstrating it as a highly effective and
efficient strategy for practical use. All methods successfully
estimated the majority of wave directions to within £20°, con-
firming the general robustness of the Gabor filter framework.

To visually illustrate the performance on real-world data,
Fig. 5 presents a collection of example patches organized
by their estimation accuracy. In these examples, the yel-
low vector represents the ground truth direction established
through manual annotation, while the red vector indicates
the wave direction estimated by our algorithm. The figure
showcases cases of high accuracy (angular error < 10°),
moderate accuracy (error < 20°), and acceptable performance
even in more complex scenes (error < 30°). This visualization
confirms the method’s capability to identify the dominant wave
orientation across a variety of real-world conditions.

TABLE II
PERFORMANCE METRICS ON
THE CHALOEM BURAPHA CHONLATHIT ROAD.

Standard  Two-Stage Interpolation
MAE (°) 13.23 12.96 12.95
RMSE (°) 15.63 15.24 15.22
Within +10° (%) 37.72 39.21 38.96
Within +20° (%) 79.65 81.39 81.14
Within £30° (%) 96.77 97.27 97.27

Fig. 5. Visual examples of wave direction estimation on real-world patches,
categorized by angular error. Each row displays results within a specific error
bound: (top) error < 10°, (middle) error < 20°, and (bottom) error < 30°.
The estimated wave direction is shown by the red vector, while the manually
annotated ground truth is the yellow vector.

V. DISCUSSION

The practical implication of this work extends directly to
coastal erosion management. The ability to automatically and
repeatedly estimate nearshore wave direction from widely
available satellite imagery provides a crucial, previously miss-
ing data layer. This information is vital for following purposes:
(1) validating and calibrating hydrodynamic and sediment
transport models, which often rely on offshore wave data that
may not reflect local conditions; (2) explaining observed pat-
terns of erosion and accretion, as wave direction is a primary
driver of longshore sediment transport; and (3) informing the
design and placement of coastal protection structures. Ulti-
mately, this method offers a cost-effective tool for monitoring
dynamic coastal processes, supporting more informed and
adaptive management strategies.

Although the techniques performed well, several limitations
merit discussion. First, the ground truth for the real-world
dataset is based on manual annotation, which is inherently
subjective. Future work could validate these results against
in-situ measurements (e.g., from wave buoys) for a more
objective assessment.

Second, the current method utilizes a fixed set of Gabor
parameters. Furthermore, the precise spatial resolution (e.g.,
meters per pixel) of the imagery was not explicitly calibrated
in this study. This combination presents a notable limitation,
as optimal Gabor filter parameters particularly the wavelength
(A) are intrinsically linked to the physical scale of the wave
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patterns. The lack of a defined scale makes it challenging to
directly apply the empirically chosen pixel-based parameters
to imagery from different sensors or altitudes, and future
enhancements should explore adaptive parameter selection. n

Third, the analysis can be confounded by non-wave features
such as sun glint or ship wakes. Integrating pre-processing
steps like image segmentation could improve reliability [22]. A
broader review of nearshore remote sensing techniques further
contextualizes these challenges [12].

VI. CONCLUSION

This study proposed and rigorously validated a multi-stage
Gabor filter analysis for wave direction estimation. By first
testing on a synthetic benchmark, we confirmed the theoretical
accuracy of the algorithms, identifying the two-stage method
as the most precise under ideal conditions. Subsequent applica-
tion to real-world coastal imagery from Thailand demonstrated
the practical robustness of the framework, with the computa-
tionally efficient interpolation method proving to be a good
choice for balancing accuracy and performance.

Our experiments show that while a standard Gabor anal-
ysis is effective, a refinement stage is crucial for enhanc-
ing accuracy. The proposed methods proved highly effective,
with the two-stage refinement yielding a mean absolute error
(MAE) of just 0.234° in ideal conditions, and the interpolation
refinement achieving a robust 12.95° MAE on real-world
data. The method is lightweight, interpretable, and suitable
for operational wave monitoring. Future enhancements may
include adaptive parameter selection for Gabor filters, inte-
gration of deep learning for improved water masking [22],
and development of probabilistic models to handle ambiguous
wave patterns more effectively [14], [23].
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