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Abstract—Real-time human pose estimation for multi-camera
systems requires near-millisecond processing, but ViTPose de-
ployment is limited by CPU-based post-processing bottlenecks.
Traditional implementations create hybrid architectures where
GPU-accelerated inference is followed by CPU-based DARK
post-processing, leading to performance degradation and GPU
underutilization. This paper proposes a TensorRT optimization
framework that systematically migrates DARK operations to
GPU through progressive integration strategies: partial inte-
gration for balanced workload distribution and full integration
for maximum GPU utilization. Our approach treats the entire
pipeline as a unified optimization target, implementing GPU-
optimized DARK operations using vectorized CUDA kernels.
Experimental results demonstrate up to 414.4% improvement
over PyTorch baseline, achieving 1909 queries per second (QPS)
throughput with 0.87ms latency while maintaining identical
AP performance (76.9%) with no accuracy degradation in the
primary evaluation metric.

Index Terms—ViTPose, TensorRT optimization, GPU acceler-
ation, DARK post-processing, real-time human pose estimation

I. INTRODUCTION

Real-time human pose estimation is critical for computer
vision applications including surveillance systems, human-
computer interaction, and behavioral analysis. Multi-camera
deployment scenarios require processing dozens to hundreds
of video streams simultaneously while maintaining near-
millisecond response times for immediate anomaly detection
and decision making.

ViTPose [1] demonstrates that plain Vision Transformer [2]
architectures achieve state-of-the-art performance in human
pose estimation, reaching 81.1% AP on MS COCO test-
dev dataset. However, the primary bottleneck in production
deployment lies in post-processing operations rather than neu-
ral network inference complexity. Traditional implementations
perform DARK (Distribution Aware coordinate Representation
of Keypoint) [3] post-processing on CPU, creating hybrid
architectures where GPU-accelerated inference is followed by
CPU-based coordinate refinement and transformation.

This hybrid approach creates performance bottlenecks
through CPU-GPU data transfer overhead and underutilizes
modern GPU parallel processing capabilities. While Ten-
sorRT [4] successfully accelerates neural network inference,
CPU-based post-processing implementations leave substantial
performance improvements unrealized.

To address these limitations, this paper proposes a Ten-
sorRT optimization framework that systematically migrates
DARK post-processing operations from CPU to GPU through
progressive integration strategies. Our approach treats the
entire inference and post-processing pipeline as a unified
optimization target, enabling systematic GPU integration that
maximizes parallel processing capabilities while minimizing
CPU-GPU boundary interactions. The framework employs
two integration strategies: partial integration for balanced
workload distribution and full integration for maximum GPU
utilization, accommodating different deployment requirements
and resource constraints.

Our key contributions include: (1) establishing an efficient
PyTorch-ONNX-TensorRT conversion pipeline supporting dy-
namic batch processing, (2) developing progressive integra-
tion strategies for systematic GPU migration of DARK post-
processing operations, and (3) demonstrating 414.4% per-
formance improvement over PyTorch baseline with 0.87ms
latency and 1909 QPS throughput while achieving perfect
accuracy preservation (identical 76.9% AP) in the primary
pose estimation metric.

II. RELATED WORK

A. Vision Transformers for Human Pose Estimation

The evolution of Transformer-based architectures for human
pose estimation has focused on improving accuracy through
sophisticated model designs. Early approaches employed com-
plex task-specific architectures, with TokenPose [5] represent-
ing keypoints as learnable tokens and TransPose [6] combining
Transformers with CNN feature extractors. HRFormer [7] inte-
grated high-resolution representations with multi-scale Trans-
former blocks to capture fine-grained spatial details.

ViTPose [1] demonstrated that plain Vision Transformer [2]
architectures achieve state-of-the-art performance without
complex modifications, reaching 81.1% AP on MS COCO
test-dev dataset. However, these advances primarily addressed
research-level metrics without considering real-time deploy-
ment requirements.

B. Coordinate Representation and Post-processing

Accurate coordinate extraction from predicted heatmaps is
crucial for pose estimation system performance. Traditional
approaches relied on simple maximum detection methods,
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which introduced quantization errors and limited sub-pixel
accuracy. Huang et al. [8] identified systematic biases in coor-
dinate encoding and decoding processes, proposing Unbiased
Data Processing (UDP) to address these issues.

DARK [3] advances coordinate decoding by modeling
predicted heatmaps as 2D Gaussian distributions through
three operations: distribution modulation, sub-pixel refinement
via Taylor expansion, and coordinate transformation. While
DARK improves coordinate accuracy, its computational com-
plexity creates CPU-based performance bottlenecks that limit
real-time deployment in multi-stream scenarios.

C. Deep Learning Inference Optimization

GPU-based inference optimization has achieved success in
accelerating neural network computation. TensorRT [4] pro-
vides comprehensive optimization through graph-level trans-
formations, including layer fusion, kernel auto-tuning, and
precision calibration. TRT-Pose [9] demonstrated TensorRT
optimization effectiveness for pose estimation on embedded
platforms, achieving real-time performance for single-stream
processing. Additional GPU optimization frameworks like
ONNX Runtime [10] and OpenVINO [11] have also shown
significant acceleration for computer vision models, though
primarily focusing on inference rather than integrated post-
processing optimization.

However, existing optimization frameworks focus on accel-
erating model inference while maintaining CPU-based post-
processing, creating hybrid systems that fail to fully uti-
lize GPU capabilities. The CPU-GPU data transfer overhead
creates system-level bottlenecks that become prominent as
inference speeds improve, limiting overall system performance
in latency-critical applications.

D. Research Gaps and Motivation

Current literature reveals a disconnect between neural net-
work inference optimization and post-processing accelera-
tion. While research has advanced model inference efficiency
through frameworks like TensorRT, post-processing operations
rely on CPU-based implementations that create computational
bottlenecks, reducing overall system performance by up to
40%.

No prior work has systematically integrated sophisticated
post-processing algorithms like DARK into GPU-accelerated
inference pipelines. Existing approaches treat inference and
post-processing as separate optimization targets, missing op-
portunities for unified acceleration.

Our work addresses these gaps by developing a framework
that treats the entire inference and post-processing pipeline
as a unified optimization target. By systematically migrating
DARK operations to GPU through progressive integration
strategies, we enable substantial performance improvements
while maintaining accuracy benefits of sophisticated post-
processing algorithms. This integrated approach represents a
paradigm shift from component-level optimization to system-
level acceleration, addressing critical bottlenecks that limit
practical deployment of advanced pose estimation systems.

III. METHODOLOGY

A. Optimization Framework

Our framework addresses the computational bottleneck in
ViTPose deployment through systematic integration of Ten-
sorRT acceleration with GPU-based post-processing. Tradi-
tional ViTPose deployment follows hybrid architectures where
GPU-accelerated inference is followed by CPU-based post-
processing. Our methodology treats the entire pipeline as a
unified optimization target, enabling GPU acceleration that
reduces CPU-GPU processing boundaries.

B. Model Conversion Pipeline

We establish a PyTorch [12] → ONNX [13] → TensorRT
conversion pipeline optimized for dynamic batch processing.
The PyTorch model is exported to ONNX format with dynamic
shape support, enabling flexible deployment across varying
computational requirements.

The TensorRT conversion incorporates FP16 precision op-
timization, CUDA graph execution, and layer fusion tech-
niques to maximize GPU utilization. Dynamic batch size
configuration supports input shapes from single-image pro-
cessing (1×3×256×192) to high-throughput batch operations
(64×3×256×192).

Validation procedures ensure numerical accuracy preser-
vation throughout the conversion process, with intermediate
outputs verified against reference implementations.

C. DARK Algorithm Analysis for GPU Integration

To develop effective GPU integration strategies, we ana-
lyze the DARK algorithm from a computational optimization
perspective, identifying bottlenecks and parallelization oppor-
tunities within each processing stage. This analysis guides our
progressive integration approach by revealing which opera-
tions benefit most from GPU acceleration and how to structure
the migration process for optimal performance.

The DARK method [3] transforms coordinate decoding
through three sequential stages: distribution modulation, max-
imum re-localization, and coordinate transformation. Each
stage presents distinct computational characteristics and op-
timization challenges that must be addressed for successful
GPU integration.

1) Distribution Modulation: The first stage applies Gaus-
sian kernel convolution to regularize irregular heatmap distri-
butions:

h′ = K � h (1)

where K represents a Gaussian kernel with standard deviation
σ = 2 and kernel size 11×11.

From a GPU optimization perspective, this convolution
operation exhibits high parallelization potential due to its
embarrassingly parallel nature across spatial dimensions and
multiple keypoints. The separable nature of the Gaussian
kernel enables efficient implementation using GPU-optimized
separable convolution kernels, significantly reducing computa-
tional complexity from O(n2) to O(n) per spatial dimension.
However, the subsequent rescaling operation requires careful
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memory management to preserve maximum response magni-
tudes while maintaining numerical stability.

2) Maximum Re-localization: The second stage performs
sub-pixel coordinate refinement to overcome quantization
limitations inherent in discrete heatmap representations. The
modulated heatmap first undergoes logarithmic transformation
to convert the 2D Gaussian distribution into a form suitable
for Taylor expansion analysis. The discrete maximum location
m = argmax(x,y) h

′(x, y) is identified within the modulated
heatmap as the initial coordinate estimate.

DARK then applies second-order Taylor expansion around
this discrete maximum location to achieve sub-pixel precision:

µ = m− (D′′(m))−1D′(m) (2)

where D′(m) and D′′(m) represent first and second-order
derivatives of the logarithmic heatmap computed using finite
differences at the maximum location.

From a GPU optimization perspective, this stage presents
the most significant computational bottleneck due to its inher-
ently sequential nature and intensive mathematical operations.
The discrete maximum finding operation requires global re-
duction across spatial dimensions of each keypoint heatmap,
which can be efficiently implemented using GPU parallel
reduction algorithms. However, the subsequent derivative com-
putation requires irregular memory access patterns around
the maximum location that can lead to memory bandwidth
limitations on GPU architectures.

The independence of computations across different key-
points enables batch-level parallelization, where multiple key-
points can be processed simultaneously using vectorized op-
erations. The matrix inversion operation in Taylor expansion,
while computationally intensive, benefits from GPU tensor
core acceleration when implemented using optimized linear
algebra libraries. Additionally, finite difference computations
can be vectorized across multiple keypoints, allowing simulta-
neous processing of derivative calculations for improved GPU
utilization.

3) Coordinate Transformation: The final stage transforms
refined coordinates from heatmap space to original image
coordinates, incorporating UDP [8] principles for accurate
scaling and offset compensation. This transformation involves
primarily element-wise operations and simple arithmetic com-
putations that are well-suited for GPU parallel processing.

The transformation stage exhibits minimal computational
complexity but requires careful attention to memory access
patterns to avoid performance degradation. Coalesced memory
access patterns can be achieved through appropriate data lay-
out optimization, ensuring efficient GPU memory bandwidth
utilization.

4) Integration Strategy Implications: The analysis reveals
that distribution modulation and coordinate transformation
stages are well-suited for immediate GPU acceleration due
to their parallel nature and regular memory access patterns. In
contrast, the maximum re-localization stage requires more so-
phisticated optimization techniques, including memory layout
optimization and vectorized batch processing.

These insights directly inform our progressive integration
strategies: partial integration prioritizes easily parallelizable
operations (distribution modulation), while full integration
addresses the more challenging re-localization stage through
advanced GPU optimization techniques. The computational
analysis establishes the foundation for systematic GPU mi-
gration that maximizes performance gains while maintaining
numerical accuracy.

D. Progressive Integration Strategies

Our approach employs two integration strategies designed to
accommodate different deployment requirements and resource
constraints.

1) Partial Integration: The partial integration strategy dis-
tributes computational workload between GPU and CPU re-
sources to balance performance and system compatibility.
Distribution modulation and derivative computation are per-
formed on GPU using separable convolutions. Final coordinate
refinement utilizes precomputed derivatives transferred from
GPU memory.

This approach provides gradual system integration with
minimal architectural changes, balanced resource utilization,
and maintains compatibility with existing CPU-based down-
stream processing.

2) Full Integration: The full integration strategy performs
all DARK post-processing operations on GPU, achieving max-
imum performance through reduced CPU processing overhead.
All operations are implemented using optimized CUDA ker-
nels with vectorization across multiple keypoints and dynamic
batch sizes.

Key features include vectorized matrix operations utilizing
GPU tensor cores, in-place memory operations minimizing
allocation overhead, memory coalescing optimizations using
aligned memory access patterns, and dynamic batch processing
optimization for sizes 1-64.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

Experiments were conducted on an NVIDIA RTX 4080
GPU using PyTorch [12] 2.7.1, ONNX [13] 1.18.0, and
TensorRT [4] 10.3 with FP16 precision optimization. The
ViTPose-B model processes 256×192 resolution images, gen-
erating 17 keypoint heatmaps corresponding to COCO pose
annotation standards.

Performance evaluation employed latency (milliseconds)
and throughput (queries per second, QPS) metrics across two
optimization profiles: opt.1 for low-latency applications and
opt.64 for high-throughput scenarios. All measurements were
averaged over 100 iterations with 3 warmup iterations to
ensure stable performance readings.

B. Accuracy Validation

To ensure GPU optimization does not compromise pose
estimation accuracy, we conducted comprehensive accuracy
validation using the MS COCO validation dataset [14]. All
implementations were evaluated using standard COCO pose
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estimation metrics following the official evaluation proto-
col, including Average Precision (AP) averaged over Object
Keypoint Similarity (OKS) thresholds 0.50:0.95 and Average
Recall (AR) across multiple OKS thresholds.

Accuracy validation was performed across four implementa-
tion variants: (1) PyTorch baseline without TTA (our optimiza-
tion target), (2) ONNX conversion without TTA, (3) TensorRT
full integration without TTA, and (4) PyTorch with Test Time
Augmentation (TTA) using horizontal flip averaging (reference
for comparison). This validation approach ensures numerical
consistency is maintained throughout the optimization pipeline
while establishing the baseline performance of our target
model.

C. Baseline Performance Analysis

Table I presents baseline performance across PyTorch and
TensorRT frameworks. PyTorch baseline achieved 210.08 QPS
for single-image processing and 371.10 QPS for batch pro-
cessing, with 4.76ms latency representing typical research
implementation performance.

TensorRT optimization without post-processing demon-
strated substantial acceleration, achieving peak performance
of 1890.08 QPS for batch processing and single-image per-
formance of 744.38 QPS with 1.34ms latency. This repre-
sents a 409.4% improvement in peak throughput and 254.3%
improvement in single-image processing over the PyTorch
baseline. However, the addition of CPU-based DARK post-
processing created significant performance degradation, reduc-
ing peak throughput to 1132.68 QPS (40.1% reduction) and
single-image performance to 580.59 QPS (22.0% reduction).
Latency increased from 1.34ms to 1.72ms, confirming that
CPU post-processing is the primary bottleneck limiting real-
time deployment.

TABLE I
BASELINE PERFORMANCE ANALYSIS

Method Opt. Batch Latency (ms) QPS

PyTorch 1 – 4.76±0.20 210.08
64 – 172.46±1.86 371.10

TensorRT
(w/o post-processing)

1 1 1.34±0.07 744.38
1 64 39.52±0.63 1619.50
64 1 2.71±0.07 369.27
64 64 33.86±0.51 1890.08

TensorRT
(w/ CPU post-processing)

1 1 1.72±0.09 580.59
1 64 61.54±0.85 1040.03
64 1 3.12±0.09 320.10
64 64 56.50±1.00 1132.68

D. Accuracy Preservation Analysis

Table II presents comprehensive accuracy validation results
across all implementation variants. The results demonstrate
that our GPU optimization framework maintains numerical
accuracy within acceptable tolerances throughout the entire
optimization pipeline.

The PyTorch baseline without TTA achieved an AP of
76.9%, establishing our optimization target and reference
accuracy for comparison. The ONNX conversion maintained

TABLE II
ACCURACY VALIDATION RESULTS ON MS COCO VALIDATION SET (AP:
AVERAGED OVER OKS 0.50:0.95, AR: AVERAGED OVER OKS 0.50:0.95)

Implementation AP AP50 AP75 AR
PyTorch (baseline target) 76.9% 90.9% 84.2% 82.2%
ONNX Conversion 76.9% 90.4% 84.1% 83.3%
TensorRT Full Integration 76.9% 90.3% 84.0% 83.3%
PyTorch + TTA (reference) 77.5% 91.2% 84.5% 82.6%
Max Accuracy Loss 0.0% (Perfect) 0.6% 0.2% -

identical accuracy (AP 76.9%) compared to the PyTorch base-
line, confirming that model serialization does not introduce
numerical errors. TensorRT full integration achieved an AP
of 76.9%, demonstrating that our GPU-based DARK imple-
mentation preserves coordinate extraction accuracy with zero
degradation in the primary pose estimation metric.

Crucially, our optimization achieves perfect accuracy
preservation in AP (0.0% loss), the most important evalua-
tion metric for pose estimation systems. Minor variations are
observed only in secondary metrics: AP50 shows 0.6 percent-
age points difference and AP75 shows 0.2 percentage points
difference, which are within typical measurement variance and
do not affect the primary performance assessment.

For reference, PyTorch with TTA achieved higher accuracy
(AP 77.5%) due to horizontal flip averaging, which provides
additional robustness. However, our optimization target is
the baseline model without TTA to maintain real-time pro-
cessing requirements. Notably, both ONNX and TensorRT
implementations showed improved Average Recall (83.3% vs
82.2%), indicating that optimized post-processing may provide
marginally better keypoint detection sensitivity.

E. Partial Integration Results

Table III demonstrates the effectiveness of strategic GPU-
CPU workload distribution. The partial integration approach
achieved consistent improvements across all configurations,
with QPS gains ranging from 109.85 to 689.08 compared to
the CPU post-processing baseline.

Single-image processing improved from 580.59 QPS to
1092.16 QPS (88.1% gain), with latency reducing from 1.72ms
to 0.92ms. Notably, this performance exceeded the TensorRT
baseline without post-processing (744.38 QPS), indicating
that optimized GPU post-processing reduces memory transfer
overhead more effectively than eliminating post-processing en-
tirely. The GPU-based convolution operations for distribution
modulation leverage optimized CUDA kernels that process
multiple keypoints simultaneously, resulting in computational
efficiency that compensates for additional post-processing op-
erations.

F. Full Integration Results

Table IV presents complete GPU integration results, demon-
strating maximum performance through reduced CPU process-
ing overhead. Peak performance reached 1909.13 QPS, repre-
senting a 68.5% improvement over the CPU post-processing
baseline and 1.0% improvement over the TensorRT baseline
without post-processing.
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TABLE III
PARTIAL INTEGRATION PERFORMANCE (GAIN VALUES REPRESENT

ABSOLUTE QPS IMPROVEMENT OVER CPU POST-PROCESSING BASELINE)

Opt. Batch Latency (ms) QPS (+∆)
1 1 0.92±0.08 1092.16 (+511.57)
1 64 39.99±0.64 1600.47 (+560.44)
64 1 2.33±0.09 429.95 (+109.85)
64 64 35.13±0.44 1821.76 (+689.08)

Compared to partial integration, full integration delivers
additional performance gains by eliminating all CPU in-
volvement. Peak throughput improved from 1821.76 QPS to
1909.13 QPS (4.8% increase), while minimum latency reduced
from 0.92ms to 0.87ms (5.4% reduction). This improvement
stems from the complete removal of CPU-GPU synchroniza-
tion points and maintaining all intermediate data resident in
GPU memory throughout the pipeline.

The GPU-based implementation utilizes vectorized opera-
tions across multiple keypoints and batch dimensions, enabling
parallel processing of Taylor expansion computations and
coordinate transformations. Memory coalescing optimizations
using aligned memory access patterns ensure efficient access,
while in-place operations minimize allocation overhead. These
architectural advantages eliminate multiple memory transfer
operations: heatmap transfer for coordinate extraction, inter-
mediate result transfers during multi-stage processing, and
final coordinate transfers back to GPU memory.

The performance gains demonstrate that treating the entire
inference and post-processing pipeline as a unified GPU
operation creates combined optimizations that achieve better
performance than individual components. By significantly
reducing CPU-GPU boundary interactions, full integration
achieves optimal resource utilization and maximum throughput
for real-time deployment scenarios.

TABLE IV
FULL INTEGRATION PERFORMANCE (GAIN VALUES REPRESENT

ABSOLUTE QPS IMPROVEMENT OVER CPU POST-PROCESSING BASELINE)

Opt. Batch Latency (ms) QPS (+∆)
1 1 0.87±0.08 1150.11 (+569.52)
1 64 39.51±0.66 1619.98 (+579.95)
64 1 2.26±0.09 442.55 (+122.45)
64 64 33.52±0.46 1909.13 (+776.45)

G. Performance Summary

Table V provides a comprehensive comparison of per-
formance improvements across all optimization approaches.
Full integration achieved up to 414.4% improvement over
PyTorch baseline, with peak performance of 1909.13 QPS and
minimum latency of 0.87ms. The progression from PyTorch
(371.10 QPS) through TensorRT with CPU post-processing
(1132.68 QPS) to full integration (1909.13 QPS) demonstrates
5.14× overall performance improvement.

The experimental results establish three key deployment
capabilities: near-millisecond processing (0.87ms) enables
real-time applications, high-throughput performance (1909.13

QPS) supports single-GPU processing of multiple concurrent
camera streams, and optimized GPU utilization enables de-
ployment in resource-constrained environments while achiev-
ing perfect accuracy preservation in the primary AP metric
(0.0% degradation).

TABLE V
PERFORMANCE SUMMARY AND COMPARISON

Method Peak QPS Min Latency Improvement
PyTorch 371.10 4.76 ms –
TensorRT w/
CPU post-processing 1132.68 1.72 ms +205.1%

Partial Integration 1821.76 0.92 ms +390.9%
Full Integration 1909.13 0.87 ms +414.4%

V. CONCLUSION

This paper addressed the critical bottleneck of CPU-based
post-processing that limits real-time ViTPose deployment. We
proposed a TensorRT optimization framework that system-
atically migrates DARK post-processing operations to GPU
through progressive integration strategies.

Our key contributions include establishing an efficient
model conversion pipeline supporting dynamic batch process-
ing, developing progressive integration strategies accommo-
dating diverse deployment requirements, and presenting per-
formance improvements through comprehensive experimental
validation. The framework treats the entire inference and post-
processing pipeline as a unified optimization target, enabling
substantial performance gains through systematic GPU inte-
gration.

Experimental results demonstrated up to 414.4% perfor-
mance improvement over PyTorch baseline, achieving 1909.13
QPS throughput with 0.87ms latency while maintaining nu-
merical accuracy. Comprehensive accuracy validation con-
firms perfect preservation of the primary pose estimation
metric (AP: 76.9%) with zero degradation, demonstrating
that our GPU optimization maintains pose estimation quality
while delivering substantial performance improvements.

The progressive integration approach successfully addresses
fundamental limitations of hybrid architectures, transforming
computational overhead into performance gains through uni-
fied GPU acceleration. These improvements enable practical
deployment in demanding real-time applications requiring
concurrent processing of multiple video streams with strict
latency constraints.

The optimized system supports practical deployment sce-
narios including near-millisecond processing for interactive
applications, single-GPU processing of multiple concurrent
camera streams for surveillance systems, and resource-efficient
deployment in edge computing environments. The integrated
optimization approach demonstrates the importance of treating
entire computational pipelines as unified targets rather than
optimizing individual components in isolation.

However, the proposed approach has limitations including
dependency on specific GPU architectures, potential scalability
issues with extremely large batch sizes, and increased GPU
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memory requirements that may limit deployment in resource-
constrained environments. Future work could explore extend-
ing this optimization framework to other vision transformer
architectures, investigating integration with tensor processing
units (TPUs) and evaluating performance on edge devices with
limited GPU memory.

This work establishes integrated pipeline optimization as
an effective approach for deploying computer vision models
in real-time environments, showing that systematic GPU inte-
gration can eliminate computational bottlenecks while main-
taining accuracy required for production applications. The
demonstrated paradigm shift from component-level to system-
level optimization provides a foundation for advancing real-
time deployment of sophisticated deep learning models in
practical applications.
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